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Popular tools used in studies in life sciences are often costly. 

This often pauses challenges to researchers in spite of the fact 

that research continues to be a key to the successful systematic 

development of new knowledge and a fundamental aspect to the 

usefulness of all higher education. Particularly, higher education 

also aims to advance, create and disseminate knowledge through 

research. Such critical studies like mutation studies therefore 

require affordable and fast results yielding software. In such 

research, open source software tools become handy in place of 

expensive proprietary tools. In order to provide alternative 

software tools for research, we decided to use a case study 

of the mutation of the African Cassava Mosaic Virus 

(ACMV) done by researchers in Zambia. The study of 

ACMV mutation is hampered by fragmented and non-

user-friendly tools, which are currently available. A 

number of the tools used also depend on network 

connection, especially the Internet, to access and analyze 

data. To help alleviate this problem this research proposes 

the use of open source libraries in biopython to generate 

cost efficient and user-friendly solutions. Additionally, we 

propose the use of an open standard using XML as a 

standard protocol to share data between applications or 

stages in genomic data analysis of the ACMV. In our strife 

to provide open source solutions we analysed various tools 

and noted that biopython is quite popular. During our 

study of biopython our initial results show that it’s 

possible to use free tools to analyze data in the life sciences 

and consequently reduce the time and cost required to 

analyze ACMV. Based on this case study we propose the 

adoption of such open source libraries in order to make 

research much more affordable for scientists in the life 

sciences for researches that operate within a constrained 

budget. 

Keywords—Bioinformatics; Biopython; Metagenomics; Open 

Source Tools; Software 

I.  INTRODUCTION 

Cassava Mosaic Virus (Begomovirus) is one of the major 
causes of the farmers’ loss of cassava yield in Central and East 
Africa. Cassava is generally cultivated in Latin America, 
Africa and India. However, species of cassava-infecting 
geminiviruses have only been recorded in Africa (East African 
Cassava Mosaic virus and South African Cassava Mosaic 
virus) and India and its neighboring islands (Indian Cassava 
Mosaic virus, ICMV). Attacks from the African Cassava 
Mosaic Virus (ACMV) often lead to a decline in cassava yield. 

Finding a solution to the declining yield in cassava caused 
by the ACMV has been, to a large extent, hindered by the 
ACMV’s quick and unpredictable mutation. Currently, the 
tools used to predict mutation of the ACMV are fragmented 
and non-user friendly. Such tools are usually also expensive. 
Furthermore, a number of the tools used depend on network 
connection, especially Internet, to access and analyse data. As 
such, the process of accessing genome databases and that of 
analysing the downloaded data on data files is somewhat long. 
This often hinders the scientists’ and researchers’ ability to 
intervene. It is also important to note that most of the analysis 
is done using several software tools because one tool alone 
does not give all the desirable output. Therefore, researchers 
have to manually move data from one tool to the next and 
sometimes some output from some tools may not be 
compatible with the file format required as input in the next 
tool. Life science researchers will often have to use some 
intermediate tool to convert the output into a format the next 
tool will accept as input. This often requires more expertise and 
knowledge than the life science research is equipped with. 

Consequently, even though agricultural and biological 
science researchers, in Zambia, have been working to come up 
with ways to eliminate or reduce the virus and its effect, the 
rapid mutation has always out done them. This is due to the 
major challenges the researchers face, which are related to 
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fragmentation, non-user-friendliness and cost of software tools 
used. This makes the researchers fail to meet the output rate 
required to help come up with solutions quick enough to beat 
the virus’ rate of mutation. 

In order to overcome the challenge of software tools, this 
research aims at developing a computational framework, which 
can be used to determine the rate of mutation of the African 
Cassava Mosaic Virus (ACMV) in order to provide a tool for 
the life scientists who seek solutions to the mutation problem. 
We further propose the use of open source libraries, which can 
also be used to develop other tools that can be used to solve 
other similar problems in the life sciences. For sharing of data 
and information we propose the use of XML based protocols. 
The rest of our paper is outlined as follows; in section II we 
discuss the African Cassava Mosaic Virus, in section III we 
present various tools which are currently used in the analysis of 
the mutation rate of ACMV, then in section IV we discuss 
XML technology, in section V we discuss Biopython, a project 
of open source libraries for bioinformatics, in section VI we 
discuss our proposed solution, in section VII we bring out our 
experiments, in section VIII we bring out preliminary results 
and finally make a conclusion in section IX. 

II. AFRICAN CASSAVA MOSAIC VIRUS 

A. Yield Dwarfing Cassava Viruses 

One of the major yield dwarfing factors of the African 
cassava is the ACMV. Its prime vector is the African Cassava 
Whitefly, Bemisia tabaci [ 1] [2]. Studies done between the 
year 2000 and 2016 indicate that the rate and pattern of 
mutation in ACMV are unpredictable, thereby always outdoing 
the farmers and researchers. Since the year 2000 there has been 
a lot of research on ACMV. Nonetheless, ACMV was first 
reported in East Africa in 1894 [3]. Vincent N. Fondong and 
Kegui Chen in [4] said that Cassava geminiviruses occur in all 
cassava growing areas of Africa and are considered to be the 
most damaging vector-borne plant pathogens. J. P. Legg et al. 
also said the rapid geographical expansion of the cassava 
mosaic disease (CMD) pandemic, caused by cassava mosaic 
geminiviruses, has devastated cassava crops in 12 countries of 
East and Central Africa since the late 1980s [5] and that there 
is definitely need to find a solution to the ACMV problem. 
Basavaprabhu L. Patil et al. suggested that the use of RNA 
interference (RNAi) is an important strategy for the control of 
ACMV [6]. The challenge farmers and researchers face with 
the ACMV is its rate of mutation that has been unpredictable 
so far. This makes it difficult to find reliable ways to eliminate 
it. R. C. Aloyce et al. developed a single tube duplex and a 
multiplex PCR for the simultaneous detection of African 
cassava mosaic virus (ACMV), East African cassava mosaic 
Cameroon virus (EACMCV), East African cassava mosaic 
Malawi virus (EACMMV) and East African cassava mosaic 
Zanzibar virus (EACMZV), four cassava mosaic 
begomoviruses (CMBs) affecting cassava in sub-Saharan 
Africa [7]. The unprecedented rate of mutation and 
transmission of the ACMV has been aided by the super-
abundant population of the whitefly vector [8]. 

B. Metagenomics of ACMV 

Metagenomics, which is the study of genomic sequences in 
order to understand relatedness of organisms, has gained 
ground in the past several years. Metagenomics allows 
scientists to study microbial diversity and dynamics without 
having to perform any wet tests in the artificial media [9] [10] 
and is often used to study mutation of viruses. Often 
researchers that study this mutation are not specialists in 
information technology and as such relevant tools used in 
metagenomics must be efficient and user-friendly.  

Most tools used by researchers in Zambia to study plant 
crop viruses are Internet based. Tools such as NCBI will 
depend on factors such as bandwidth and connectivity for 
output. Alicai et al. in [11] reported the use of a package called 
Phylogenetic Analysis by Maximum Likelihood (PAML), 
which Ziheng Yang in [12] said, was not the best for 
phylogenetic tree making because you have to manually 
modify tree files. With the foregoing, it implies that researchers 
have to move data from software to software in order to get all 
components of their desired results. 

III. RELATED WORKS 

From the information given by interaction with scientists 
from Mount Makulu Research Station, in Zambia and our own 
study of the currently used tools, we outline commonly used 
tools and what they are generally used for in this section and 
later on in section VI scenario of their uses. 

A. Bioedit 

Bioedit is an old software tool that is mostly used by 
scientists for percentage identity analysis and the study of 
phylogenetic relatedness of different DNA sequences. Virus 
DNA sequences are compared against other sequences in e-
libraries. If the percentage is less than 80 percent the virus 
being analysed is considered to be unrelated to the other similar 
viruses in the database. When used in the study of ACMV 
Bioedit is often used before using the Sequence Demarcation 
Tool to prepare the data for export into the other software tools 
used later on in the analysis. Bioedit can import data from a 
clipboard as long as the data is in a well-defined format such as 
fasta files. Apart from clipboard imports, Bioedit can also read 
a number of formats including “.txt”, “.fas”, “.fasta”, “.fst”, 
“.xml”, “.meg” (from Mega) as long as they are fasta file 
formats. Bioedit also has a NCBI web service capability and it 
allows for sequences to be viewed in many forms including 
colour shades on alignments. 

B. Mega 6 or 7 

Mega 6 is a sequence alignment tool. It aligns gene 
sequences for comparison of related positions. It is also used 
for making of phylogenetic trees. Mega 7 can read from many 
file formats but “.txt”, “.xml”, “.csv” formats are not supported. 
Though Mega 7 has many things it can do, it does not 
communicate directly with NCBI. Therefore, data must first be 
exported to a file before it is imported into Mega 7. 
Furthermore, to achieve basic alignment using Mega tools 
requires the use of a basic specific plugin. 
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C. Sequence Demarcation Tool (SDT) 

SDT has all the features contained in Bioedit and Mega 6 
but is visually more pleasant. SDT is also used mostly for virus 
percentage identity comparisons. Any percentage above 80 
percent may be interpreted as a prediction of relatedness of one 
or more viruses being compared with a given virus. Such a 
percentage may also mean the viruses being compared are the 
same species and strain. A percentage less than 40 will mean a 
lack of relatedness of the viruses under comparison by DNA or 
RNA. Apart from being able to align the sequences, SDT also 
presents pairwise comparison using colour codes. This makes it 
easy for laymen to understand the identity comparisons. 
However, the matrix presentation of SDT is not that easy to 
understand for laymen. SDT can read from many file formats 
including “.txt”, “.meg”, and “.fas” but does not have a NCBI 
web service capability and so data has to first be exported to 
text files before importing into SDT. 

D. Geneious 

Geneious is a commercial genome analysis software tool. It 
has web service support for genome data. It has support for 
multi file formats for output such as “.txt”, “.geneious” and 
“.csv”. It can do all what the previously discussed tools can do 
from alignments to phylogenetic trees. It however lacks in the 
look and feel of outputs when compared to the other tools such 
as that of Mega. For example, the presentation of the alignment 
output does not have a pleasant look and feel but the 
phylogenetic tree does. Geneious also has a NCBI web service 
capability and can also create a local library for offline use. 

E. National Center for Biotechnology Information 

The National Center for Biotechnology Information 
(NCBI) advances science and health by providing access to 
biomedical and genomic information [13]. In the study of the 
mutation of ACMV, NCBI is used just for percentage identity 
of microorganisms by comparison with existing organisms 
already fed into the NCBI genome library. NCBI gives a 
sequence-by-sequence relatedness of microorganisms like virus 
strains. Data from NCBI can also be used for DNA/RNA 
sequence alignment. Data from NCBI can be exported to many 
file formats including “.txt”, “.fas”, “.csv”, “.asn”, “.json”, and 
“.xml”. NCBI provides both data for molecular biology as well 
as tools to analyse and study this data. 

IV. EXTENSIBLE MARKUP LANGUAGE. 

eXtensible Markup Language (XML) is essentially 
a markup language that defines and outlines a set of rules for 
encoding data files in a format that is both human 
and machine-readable. XML was designed to be both human- 
and machine-readable. For this reason, XML is increasingly 
becoming important norm and standard for the exchange of a 
wide variety of data on the Web and distributed applications 
[14] [15] [16] [17] [18]. It has also found use in many 
applications because it is not programming language and 
machine specific [19] [20] [21]. Using XML, disparate systems 
can communicate with each other by exchanging XML 
messages. Furthermore, XML can also be used to store the data 
persistently. XML protocols have been developed which can be 

used to develop solutions that allow two or more applications 
to communicate in a distributed environment, using XML as 
the language of encapsulation, storage and transportation. 
Thus, XML can be used for both storage and transportation of 
such data.  

V. BIOPYTHON. 

Biopython is a collection of open source bioinformatics 

tools written in an object-oriented scripting language called 

Python. It is a project, which dates as far back as August 1999 

[22] [23]. Biopython makes available libraries to people doing 

computational Python for biological data. It can be 

downloaded for free from http://www.biopython.org. It is a 

project where many people have contributed and are still 

contributing making it a library rich project. Most, if not all, of 

the analysis tools required for bioinformatics can be built 

using Biopython libraries of the Python language [24] [25]. A 

number of modules can be integrated to make any 

bioinformatics project complete. It has modules for creating 

both online and standalone tools. The modules, which we 

desired to use for the purposes of this research, are 

summarised in figure 5. There is no need to create the science 

behind the modules because it has already been done and 

made ready to use.  

VI. MATERIALS AND METHODS 

The main aim of this research is to develop a computational 
framework, which can be used to determine the rate of 
mutation of the African Cassava Mosaic Virus (ACMV) in 
order to provide a tool for the life scientists who seek solutions 
to the mutation problem. To achieve this, the first thing we did 
was to conduct a study of online and standalone software tools 
used by Zambian agricultural and biological researchers to 
analyse the ACMV genome. Based on this study we then 
propose a computational framework for the prediction of the 
mutation of the ACMV and use the framework and open 
source libraries to start the development of a comprehensive 
user-friendly tool. 

To better understand the usage scenarios, we had audience 
with researchers from Mount Makulu Research Station in 
Zambia to find out the procedure used when analyzing genome 
data for the prediction of the ACMV mutation rate. We will 
briefly describe the procedure used.  

A. CASE OF MT. MAKULU RESEARCH STATION 

The researchers from Mount Makulu Research Station took 
the following steps in analyzing ACMV genome data: 

1. Percentage Identity Analysis 

Percentage identity is the quantitative similarity between at 
least two DNA, amino acids and other genetic sequences. 
There are several genome libraries, globally, which include the 
NCBI [13]. Researchers compare genome sequences of 
organisms, which they are studying, with organisms whose 
genome data has already been stored on genome libraries. This 
is done to check whether their organism has already been 
studied or it is a newly discovered one. This is also done to 
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collect data of similar organisms for possible mutation studies. 
The retrieval of genome data from genome libraries is known 
as blast. In the same vain, the Mount Makulu researchers were 
always interested in first knowing whether the organism they 
were studying had already been recorded somewhere or it was 
a newly discovered organism altogether. In order to do this, 
they fed their genetic sequence in the ncbi library for 
percentage identity. Bioedit is another software tool 
(standalone), which they could use for percentage identity of 
multiple sequences, which have been downloaded from ncbi 
[26] [27]. However, they only used Bioedit to export the 
sequences to a fasta format file, which was then imported into 
SDT for percentage identity analysis. The researchers leveraged 
on ncbi only for downloads of similar sequences and not for 
identity analysis. Using SDT, if their sequence got at least 80 
percent identity they deduced that the organism under study 
was either related to those in the library, which had at least 80 
percent hit or it was exactly the same as one of the existing 
organisms. If the relatedness was less than 40 percent, they 
supposed that their organism could be a new discovery. The 
multiple sequences of interest identified from the ncbi were 
saved on a file in fasta format for input in Mega 6 or Geneious, 
for sequence alignment. Although these researchers used only 
ncbi, it is not the only genome data library; others like Swis-
Prot and ExPASy exist [22]. 

2. Sequence Alignment 

After the identity analysis, the Mount Makulu researchers 
proceeded to have their multiple genetic sequences aligned in a 
manner that would allow them to identify pattern consistency 
or inconsistency which would lead to conclusions on whether 
mutation occurred or not. The software tools they generally 
used for sequence alignment are Mega 6 and Geneious. 

3. Pairwise Analysis 

Following the sequence alignment is the analysis of 
sequences in pairs for relatedness. SDT is used for this purpose 
because it displays the results of pairwise analysis in nice 
colour density grids, which the Mount Makulu researchers find 
easy to interpret because they are laymen in computer 
programming. The other reason for their love of SDT is its 
visual results, which are easy to display for explanation to other 
computer science laymen. 

4. Evolutionary Relationship Analysis 

Once the genetic relatedness of sequences has been 
established and the multiple sequences have been aligned for 
consistency check and pairwise analysis, the final stage by the 
Mount Makulu researchers was to show evolutionary 
relationship of the many strains represented by the individual 
sequences. This was achieved by creating a phylogenetic tree 
using Geneious. 

The four stages of genome data analysis have been 
summarised using the flowchart in figure 1. Each process shape 
contains a stage of the genome data analysis and the software 
tools used by Mount Makulu Research Station researchers to 
achieve their desired output. Some of these software tools can 
do more than what the researchers use them for. 

B. Proposed solution: OPEN SOURCE SOFTWARE 

  (Bio-pyhon libraries based tool) 

We observed that some of the challenges in arriving at a 

timely solution to the ACMV are the rate at which the virus 

mutates against the software tools that give output slowly and 

the availability of affordable fast output software tools. In 

striving to provide a solution to the challenges, we delved into 

the study of Biopython libraries to find cheaper and quicker 

ways of carrying out the same analyses described in sub-

section A of section VI. We discovered that the analyses could 

be done using some Biopython modules, methods, functions 

and few other integrated open source tools as described in sub-

sections 1 to 4 that follow. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1. Percentage Identity Analysis 

Biopython has a function qblast( ) that calls the NCBI 
Internet blast module Bio.Blast.NCBIWW. This function can 
successfully be used to create a web service to be used for 
searching the NCBI library for related sequences of any 
microbe being studied. The NCBI genome library can be 
downloaded onto a local storage using Biopython. Once this is 
done, a blastx Biopython wrapper Bio.Blast.Applications 
module can be used to create command-line strings for blast 
purposes (identity searches from the local genome library). 
Blast is faster if the genome data sits on a local storage. The 
blast output using Biopython libraries include XML. This 

Figure 1: Stages of Genome data analysis carried out by Mt. 

Makulu Research Station researchers. Research software tools 

included 



Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1)  © (2018) 

 

Zambia (ICT) Journal, Volume 2 (Issue 1)  © (2018)   48 

 

makes it possible to come up with a framework that helps 
various software tools to communicate, knowing that XML is 
universal standard. The blast output can successfully be parsed 
using Biopython XML parsers when carrying out analyses. 

2. Sequence Alignment 

Using Biopython libraries, sequence alignment (from few 
sequences to many) can be achieved by utilising 
Bio.AlignIO.read( ) function (for very few sequences) and 
Bio.AlignIO.parse( ) function (for multiple sequences). The 
output can be written to a file of any fasta format including 
XML using Bio.Align.Write( ) or Bio.Align.convert( ) 
functions. Bio.Entrez is a parser for parsing the XML 
alignment files. Biopython has command-line tools for multiple 
sequence alignment; Clustalw and Clustalx are the most 
popular. They must be installed on a local pc first before an 
alignment is done. Bio.Align.Applications module in 
Biopython has a wrapper for the tools. When we tested 
alignment using Mega 6 and Geneious, it took over an hour to 
have the sequences aligned. Using Clustalx command-line 
tools took only slightly over 30 minutes, during our 
comparison test. 

3. Pairwise Analysis 

In order to carry out pairwise analysis using Biopython, the 
Bio.pairwise2 module does the work. The input is mostly a 
fasta file but the module allows programmers to create their 
own functions. This is a plus in that during the creation of our 
own functions we could use XML files which is our proposed 
file share standard. Pairwise analysis is just an alternative to the 
sequence alignment described in sub-section 2 of section VI 
(B). 

4. Evolutionary Relationship Analysis 

Evolutionary relationships are easily presented using 
phylogenetic trees. Biopython has Bio.Phylo module for 
phylogenetic tree creation. PhyloXML feature of the same 
module helps to create XML phylogenetic trees. Phylo module 
can read from .dnd and .xml files. 

VII. EXPERIMENTS 

A. Data 

We decided to run experiments, ourselves, with the 
software tools used by Mount Makulu Research Station 
researchers and went on to run more experiments but this time 
using biopython libraries to compare rate of output. During our 
experimentation we used ninety-two ACMV sequences, which 
we obtained from NCBI through an online nucleotide blast of a 
virus with accession number “AJ717542.1”. A researcher from 
Mount Makulu Research Station gave the accession number 
and its genetic sequence to us. For any reference, the same data 
can still be obtained through a nucleotide blast on the NCBI 
site by either entering the accession number “AJ717542.1” or 
the sequence string in appendix 5. After the nucleotide blast we 
saved the data in a fasta format text file. It is this file that we 
ran alignment experiments with Mega 7, SDT and Geneious.  

B. Experiments 

When running a sequence alignment SDT and Geneious 
were able to read straight from the “.txt” file that we had saved. 
For Mega 7, we had to use a “.fas” file. We experimented with 
producing a phylogenetic tree using Geneious because the 
Mount Makulu researchers told us it was the only one they 
used for production of the phylogenetic trees. At this stage of 
our research we focused much on sequence alignment, 
comparing between that of the three preexisting software tools 
and that of the biopython libraries, which we tumbled on 
during our reading.  

We implemented both the non-XML file output and the 
XML-file output of a blast and sequence alignment using 
biopython libraries. The code is presented in appendices 1 and 
4. During our implementation we used PyCharm and 
Anaconda-Navigator Integrated Development Environments 
(IDE). We created a Python script to carry out online blast and 
parsed the handled result into aligned sequences. Our 
biopython code first searched NCBI for sequences that match 
that of the ACMV with accession number AJ717542.1 at 
expectation value threshold less than 0.04. The matched 
sequences were then aligned against our initial AJ717542.1 
ACMV sequence.  

After experimenting with online sequence blast and 
alignment we went on to experiment with carrying out 
sequence alignments using a file of already downloaded 
sequences using command line tools. We did this to compare 
rate of output between that of using online sources and that of 
using locally stored data. 

The results of all experimentations are presented in section 
VIII (Preliminary Results). 

VIII. PRELIMINARY RESULTS 

This section presents results, at this stage of our research, 
from the experiments carried out and described in section VII. 
After experimenting with three preexisting software tools that 
are used by local researchers, in Zambia, to study genome data 
of the ACMV we found that the total time taken to go through 
all the desired steps was at least nine (9) hours; one process ran 
infinitely. Sequence alignment alone took an average of 2 
hours 4 minutes with each software. When we used libraries 
from the proposed biopython we ran through all the steps 
within three (3) hours, which is at most one-third the time it 
took while using the preexisting software tools. Sequence 
alignment took an average of 38 minutes. At this stage of our 
research we implemented the nucleotide blast, multiple 
sequence alignment and production of phylogenetic trees 
(evolutionary analysis). Figures 2 to 4 summarise results from 
our experimentation. Figure 2 is a bar chart showing average 
time it took to align 92 sequences using the three preexisting 
software tools (Mega 7, SDT and Geneious). Mega 7 had the 
best average time of all the three. We then compared Mega 7 
results with those of online blast/alignment and alignment from 
locally saved data. Figure 3 shows that the online 
blast/alignment had the best duration with an average time of 3 
minutes 20 seconds. The alignment of locally saved data gave 
us an average of 38 minutes 20 seconds. 
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Generally, we observed that it is possible for us to use the 
XML standard for data transfer between modules and functions 
of Biopython. This would make data sharing universal because 
XML is universal. Figure 6 presents a summary of the 
proposed solution and computational framework that uses 
Biopython libraries (modules and functions). File sharing will 
be done through XML files. One XML output of one module 

or function will serve as input into the next module or function 
and this will go on until the final desired output or visual 
representation. Appendix 4 shows one of the XML output, after 
a blast. Listing 1 is a XML schema for a PhyloXML 
evolutionary comparison tree. By the end of this research the 
final product will be a software tool with graphical user 
interfaces for easy use by computer science laypersons.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Comparison of average sequence alignment duration for the three preexisting software tools used by Mount Makulu 

Research Station researchers. 
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Figure 3: Comparison of sequence alignment duration of Mega 7 against the online blast/alignment and the alignment of locally 

saved data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

Figure 4: Scatter plot for the data in figure 3, shows stability in output for each scenario 
 

Listing 1: XML Schema for PhyloXML Tree 

 

<?xml version = "1.0" encoding = "UTF-8"?> 

<xsi:schema xmlns="http://www.phyloxml.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation="http://www.phyloxml.org http://www.phyloxml.org/1.10/phyloxml.xsd"> 

 <xsi:element name = "phyloxml " type = "schema namespace string"> 

  <xsi:element name = "phylogeny rooted = 'false'" type = "xsi:string"> 

   <xsi:element name "clade" type = "xsi:string"> 

    <xsi:element name = "clade" type = "xsi:string"> 

     <xsi:complexType> 

      <xsi:sequence> 

       <xsi:element name = "name" type = "xsi:string" /> 

       <xsi:element name = "branch_length" type = "xsi:string" /> 

      </xsi:sequence> 

     </xsi:complexType> 

    </xsi:element> 

   </xsi:element> 

  </xsi:element> 

 </xsi:element> 

</xsi:schema> 
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Figure 5: Output of Biopython ascii phylogenetic tree 
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The implementation of XML blast and saving the output to 

a file is a step in our desired direction of using XML for file 

sharing between applications in our framework or between 

steps when we create a comprehensive and user-friendly tool 

that will be used to study the mutation of the ACMV. 

Appendix 4 has the sample code for saving to XML after a 

blast. 

IX. CONCLUSION 

In this research we propose a computational framework that 
uses preexisting tools to offer a comprehensive user-friendly 
tool that will be used to determine the rate of mutation of the 
African Cassava Mosaic Virus. After analysis of the steps and 
procedures involved in the analysis of the mutation of ACMV 
we further propose the use of Biopython, which has libraries 
that have many capabilities from sequence alignment to 
pairwise analysis of genome data and phylogenetic tree 
production. We observed that downloading the genome 
libraries to local servers would make genome analysis faster. 
Nonetheless, the combination of online nucleotide blast and 
sequence alignment when using Biopython libraries proved to 
be faster than carrying out sequence alignment using a local 
genome data library. The use of a local genome library with 
biopython to carry out an alignment was faster than using the 
preexisting software tools, which are used by Mount Makulu 
Research Station researchers. We take note that genome 
libraries like NCBI have computers optimized for high-speed 
search of data unlike our usage of our simple RAM strained 
laptops during our experimentation.  We, therefore, conclude 
that if we create a local optimized scenario we will get results 
faster than we did during the online blast/alignment. We also 
observed that the use of XML files would help with the various 
components of the software tools communicating with each 
other in form of output to input relationship. Fortunately, 
Biopython has methods for downloading genome data and can 
read from a XML file as initial input and at any level of 
analysis. This is a score to meet our aim of developing a 
computational framework that uses preexisting tools to offer a 
comprehensive user-friendly tool. This tool will be used to 
determine the rate of mutation of the African Cassava Mosaic 
Virus. 

Biological science and agricultural science researchers in 
Zambia at the time of this research used manual feeding of data 
into each software tool used to analyse the genome data of the 
ACMV for its mutation. Developing a comprehensive user-
friendly tool that will be used in the study of the mutation of 
ACMV should improve the rate at which solutions against the 
virus are provided. This will help in enhancing resistance to the 
virus, in the cassava, and thus improve cassava yields. 

For future work we plan to implement data sharing using an 
XML based protocol for sharing information between the 
different stages of the genome data analysis. The blast and 
alignment output in XML was tested successfully. Using the 
said protocol, we can implement a distributed solution that 

takes advantage of high performance architectures and hence 
enhance performance of the integrated tool. We plan to create 
local optimized high performance architecture to provide faster 
output of sequence alignments. We also plan to do a survey to 
get feedback from the life science researchers on how to better 
the comprehensive customized tool. In our next report we will 
also discuss the science behind the sequence analysis steps in 
terms of the algorithms used to get our code work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Proposed solution and computation framework of 

open source tools using Biopython libraries 
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print(f'{Fore.RED}****Alignment****{Style.RESET_ALL}') 

            print('sequence: ', alignment.title) 

            print('length: ', alignment.length) 

            print('Identity:', hsp.identities) 

            print(round(hsp.identities / alignment.length * 100, 2), '% 

identity') 

            print("\033[1;41m" + hsp.query + "\033[1;m") 

            print(hsp.match) 

            print("\033[36m" + hsp.sbjct + "\033[0m") 

    result_handle.close() 

    print("") 

    print("") 

    

print("***********************************************

****************") 

    print("DONE!") 

 

textBox = Text(blastAlign, height=1, width=20) 

textBox.pack() 

buttonCommit = Button(blastAlign, height=1, width=10, 

text="Blast", fg="blue", command=lambda: blast_align()) 

buttonCommit.pack() 

mainloop() 

# coding=utf-8 

 

from Bio import Phylo 

 

from Bio.Phylo.PhyloXML import Phylogeny 

 

 

handle = "Path_to_file/acmv2018.xml" 

 

acmv_tree = Phylo.read(handle, 'phyloxml') 

 

#Phylo.draw(acmv_tree) 

 

acmv_tree.root_at_midpoint() 

 

acmv_tree.ladderize(reverse=True) 

acmv_tree.clade[0, 0, 0, 0].color = "red" 

acmv_tree.clade[0, 0, 0, 0].width = 1 

 

acmv_tree.clade[0, 0, 0, 1].color = "blue" 

acmv_tree.clade[0, 0, 0, 1].width = 1 

 

acmv_tree.clade[0, 0, 0].color = "green" 

acmv_tree.clade[0, 0, 0].width = 1 

 

acmv_tree.clade[0, 0, 1].color = "yellow" 

acmv_tree.clade[0, 0, 1].width = 1 

 

acmv_tree.clade[0, 0].color = "red" 

acmv_tree.clade[0, 0].width = 1 

 

 

# coding=utf-8 

 

#Import GUI class 

from tkinter import * 

 

#Import color class 

from colorama import Fore 

 

from colorama import Style 

 

#Import NCBI online blast module 

from Bio.Blast import NCBIWWW 

 

#Import NCBI XML blast module 

from Bio.Blast import NCBIXML 

 

#Initialise method to create GUI 

blastAlign = Tk() 

 

 

#Define the blast function 

def blast_align(): 

    """ 

 

    :return: 

    """ 

    print("Blasting....") 

 

    #Define the function to retrieve the accession number from the 

GUI input variable 

    def retrieve_input(): 

        """ 

 

        :return: 

        """         

 

        accessionNumber = textBox.get("1.0", "end-1c") 

        return accessionNumber 

 

    #Retrieve the accession number from the GUI input variable 

    retrieve_input() 

    #create a data handle for the blast result 

    result_handle = NCBIWWW.qblast("blastn", "nr", 

                                   retrieve_input(), 

                                   word_size=7, 

                                   gapcosts='5 2', 

                                   nucl_reward=1, 

                                   nucl_penalty='-3', 

                                   expect=1000) 

    blast_records = NCBIXML.read(result_handle) 

 

#Can use the Expectation Value Threshold to limit number of 

output; here it is commented out below 

    # E_VALUE_THRESH = 0.04 

 

    #carry out the alignment after data has been appended to a 

handle after blast 

    for alignment in blast_records.alignments: 

        for hsp in alignment.hsps: 

            # if hsp.expect < E_VALUE_THRESH: 
 

 

 

 

 

 

APPENDICES 

Appendix 1: Python code for biopython blast and alignment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 2: Biopython code for an ascii phylogenetic tree 
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# coding=utf-8 

 

from Bio import Phylo 

 

from Bio.Phylo.PhyloXML import Phylogeny 

 

dnd_file_input = " Path_to_file /Grey-Mega7b.dnd" 

 

xml_file_output = " Path_to_file /Grey-

Mega7bPhyloXML.xml" 

 

PhyXMLTree = Phylo.read(dnd_file_input, 'newick') 

 

Phylo.convert(dnd_file_input, 'newick', xml_file_output, 

'phyloxml') 

 

phyTreeFromXML = Phylogeny.from_tree(PhyXMLTree) 

 

print(PhyXMLTree) 

# coding=utf-8 

 

from Bio.Blast import NCBIWWW 

 

result_handle = NCBIWWW.qblast("blastn", "nr", 

"AJ717542.1", format_type="XML") 

save_file = open("Path_to_file /acmv_blast.xml", "w") 

save_file.write(result_handle.read()) 

save_file.close() 

result_handle.close() 

acmv_tree.clade[0].color = "orange" 

acmv_tree.clade[0].width = 1 

 

acmv_tree.clade[1].color = "blue" 

acmv_tree.clade[1].width = 1 

 

acmv_tree.clade[1, 0, 0, 0, 0, 0].color = "purple" 

acmv_tree.clade[1, 0, 0, 0, 0, 0].width = 1 

 

acmv_tree.clade[1, 0, 0, 0, 0, 1].color = "fuchsia" 

acmv_tree.clade[1, 0, 0, 0, 0, 1].width = 1 

 

acmv_tree.clade[1, 0, 0, 0, 0].color = "red" 

acmv_tree.clade[1, 0, 0, 0, 0].width = 1 

 

acmv_tree.clade[1, 0, 0, 0].color = "green" 

 

acmv_tree.clade[1, 0, 0, 0].width = 1 

 

acmv_tree.clade[1, 0, 0].color = "yellow" 

acmv_tree.clade[1, 0, 0].width = 1 

 

acmv_tree.clade[1, 0].color = "orange" 

acmv_tree.clade[1, 0].width = 1 

 

acmv_tree.root.color = "gray" 

 

Phylo.draw(acmv_tree) 
 

AATGTATCGAAGCCCAGATGTTCCTAAGGGCTGT

GAAGGCCCATGTAAGGTTCAGTCGTATGAACAG

GGGGATGATGTTAAGCACACTGGTATGGTTCGA

TGTGTCAGTGATGTTACGCGTGGGCCAGGCATTA

CCCATAGAGTCGGGAAGAGGTTTTGTGTGAAGT

CCATATATATATTGGGCAAGATCTGGATGGATG

AGAATATCAAGAAGCAAAATCATACGAACCATG

TTATGTTCTTCCTCGTGCGAGATAGAAGGCCTTA

TGGGCCGAGCCCACAAGATTTTGGACAAGTGTT

CAACATGTTTGATAATGAGCCTACTACGGCAACT

GTGAAGAATGATCTTAGGGACCGGTATCAGGTG

TTACGTAAATTCTATGCGACTGTTGTTGGTGGAC

CCTCTGGGATGAAGGAACAAGCTCTGGTTAAGA

GGTTTTTTAGGATCAATAATCATGTAGTGTATAA

TCATCAGGAACAGGCCAAGTATGAGAATCATAC

TGAGAATGCGTTGTTATTGTATATGGCATGTACA

CATGCCTCAAATCCTGTGTATGCTACGCTGAAAA

TACGCATCTATTTCTATGATGCAGTGACAAATTA

ATAAAGGTTGAATTTTATTGCATGTTGCTCCGTA

ACTTGGAGCGTGTTTAGTAATACATCGTACAGAA

CATGATCAACAGATTGAAGTACAGTGTTAATGG

AAATAACGCCTATCATATCTAAATACTTGAGCAC

TTGAGATCTAAATACTCTTAAGAAAAGACCAGT

CTGAGGCCGTAAGGTCGTCCAGACCTTGAAGTT

GAGAAAACACTTGTGAATCCCCAATGCCTTCCG

GATGTTGTGGTTGAACCGTATCTGGATTGTGATG

ATGTCGTGGTTCATGTTCCCTGGCCTCTTGTCGT

GGTTGGTGATTGCGAAATAGAGGGGATTTGTTAT

TTCCCAGGTAAAAACGCCATTCGTTGCTTGAGGC

GCAGTGATGAGTTCCCCTGTGCGAGAATCCATG

GTTGATGCAGTCGATGTGGAGATAGAACGAGCA

GCCGCATTCGAGGTCTACCCGCCTACGTCTGATG

GCCCTGGTCTTCGCTGTGCGGTGTTGGACTTTGA

TGGGCACTTGAGAACAATGGCTCGTGGAGGGTG

ACGAAGGTGGCATTCTTTAAAGCCCAGGCTTTAA

GGGACTGGTTCTTTTCCTCATCCAGAAACTCTTT

ATATGATGATGTTGGTCCTGGATTGCAGAGGAA

GATAGTGGGAATGCCGCCTTTAATTTGAATCGGC

TTTCCGTACTTTGTATTGCTTTGCCAGTCCCTTTG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 3: Biopython code for outputting a PhyloXML tree 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 4: Sample code for outputting XML after a blast 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix 5: Genetic sequence for ACMV with accession 
number “AJ717542.1” 
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GGCCCCCATGAATTCTTTGAAGTGTTTGAGGTAG

TGGGGGTCGACGTCATCAATGACGTTGTACCAG

GCGTCGTTGCTGTAGACCTTTGGACTGAGATCCA

GGTGTCCACATAAATAATTATGTGGTCCCAATGA

CCTGGCCCACATGGTCTTCCCTGTACGACTATCA

CCTTCTAGAACAATACTGTTGGGTCTCCAAGGCC

GCGCAGCGGAACCCATCACGTTCTCGGAAACCC

AGACTTCAAGTTCCTCAGGAACGTTAGTAAAAG

AGGATGATAAGAACGGACTAACGTAAGTTTGGG

GCGGAGCCTGGAAGATTCGATCTGCGTTAGCAG

ATATGTTATGGAACTGTAAAAAAAAGGACTTGG

GATCTTTTTCTTTGATAATTTGAAGAGCTTCGGA

TTTCGAAGAAGCATTCAACGCGTCTGCATAGACC

TGAGCTAAATGCTGGCCCTCCCCCCTGGCACTTC

GGGCATCGACTTGGAAAATTCCATCGTCAAGAA

ATTCCCCTCCCTTTTCAATGTAAGCCTTGACATC

ACCGGATGGCCGCGCCCGAAAAAGCAGGTGGAC

CCCACCACATGGCCGCACGCGTAAAAGAAAGTG

GTCCCCGCGCACTGGTATTGGTCGGCCAGTCATA

TTCACGCGTGGAAGTCTAGATATTTGTGGGTTGA

CGTTATATACTTCGTCGCGAAGTAGTGGAGCGCG

TCAACATGTGGGATCCATTGTTGAACGATTTTCC

CGAAACCGTTCACGGTTTCCGTTCTATGCTTGCT

GTTAAATACCTGTTACATCTTGAACAGGAATACG

ATCGCGGTACTGTCGGGGCTGAGTATATACGGG

ATCTAATAGGGGTGCTACGGTGTAAGAGTTATGT

CGAAGCGACCAGGAGATATAATAATCTCAACAC

CCGTATCCAAGGTGCGGAGGAGGCTGAACTTCG

ACAGCCCATACACGAACCGTGTTGTTGCCCCCAC

TGTCCGCGTCACCAGAAGCAAAATATGGGCCAA

CAGGCCCATGTATCGGAAGCCCAAGATGTACAG 

GGACGATGATTTAGCGCCCTGAATGTTCGGATG

GAAATGTGTTGATCTGGATGGGGAAATGAGATC

GAAGAATCTGGGGTTGGTACATTGGAACTTGCCT

TCGAATTGGATGAGAACATGGAGATGAGGCACC

CCATCCTGATGTAGTTCTCTGCAAACCCTAACGA

ATTTGATATTCGTCGGATAAGCAAAAGCTTTTAA

TTGGGAAAGAGCCTCTTCCTTTGTTAATGAGCAG

CGGGGATAGGTGATGAAATAATTTTTGGCATTTA

TTTGAAAACGACCGGCTCTTGGCATATTTGCTGT

CGTTTTGGATCGGGGGACACTCAAAACTCCAGG

AGAACGGTGGAATGGGGGGCATTATATAGGATG

TCCCCCAATGGCATATGTGTAAATAGGTAGAAG

TCCATTCAAAATTTGAATTGCGAATATTGGCGGC

CATCCGATTAATATT--- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


