

ZAMBIA INFORMATION COMMUNICATION TECHNOLOGY (ICT)
JOURNAL

Volume 2 (Issue 1) (2018) Pages 44-56

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 44

Using Open Source Tools for Analysis of the

Mutation Rate of African Cassava Mosaic Virus

Grey Chibawe

M.Sc. Computer Science student: University of Zambia

Department of Computer Science

P.O. Box 32375-Lusaka, Zambia

gchibawe@gmail.com1

Lillian Mzyece

M.Sc. Computer Science student: University of Zambia

Department of Computer Science

P.O. Box 32375-Lusaka, Zambia

mamzyece@gmail.com3

Mayumbo Nyirenda

Lecturer: University of Zambia

Department of Computer Science

P.O. Box 32375-Lusaka, Zambia

mayumbo@gmail.com2

Jackson Phiri

Lecturer: University of Zambia

Department of Computer Science

P.O. Box 32375-Lusaka, Zambia

jackson.phiri@gmail.com4

Popular tools used in studies in life sciences are often costly.

This often pauses challenges to researchers in spite of the fact

that research continues to be a key to the successful systematic

development of new knowledge and a fundamental aspect to the

usefulness of all higher education. Particularly, higher education

also aims to advance, create and disseminate knowledge through

research. Such critical studies like mutation studies therefore

require affordable and fast results yielding software. In such

research, open source software tools become handy in place of

expensive proprietary tools. In order to provide alternative

software tools for research, we decided to use a case study

of the mutation of the African Cassava Mosaic Virus

(ACMV) done by researchers in Zambia. The study of

ACMV mutation is hampered by fragmented and non-

user-friendly tools, which are currently available. A

number of the tools used also depend on network

connection, especially the Internet, to access and analyze

data. To help alleviate this problem this research proposes

the use of open source libraries in biopython to generate

cost efficient and user-friendly solutions. Additionally, we

propose the use of an open standard using XML as a

standard protocol to share data between applications or

stages in genomic data analysis of the ACMV. In our strife

to provide open source solutions we analysed various tools

and noted that biopython is quite popular. During our

study of biopython our initial results show that it’s

possible to use free tools to analyze data in the life sciences

and consequently reduce the time and cost required to

analyze ACMV. Based on this case study we propose the

adoption of such open source libraries in order to make

research much more affordable for scientists in the life

sciences for researches that operate within a constrained

budget.

Keywords—Bioinformatics; Biopython; Metagenomics; Open

Source Tools; Software

I. INTRODUCTION

Cassava Mosaic Virus (Begomovirus) is one of the major
causes of the farmers’ loss of cassava yield in Central and East
Africa. Cassava is generally cultivated in Latin America,
Africa and India. However, species of cassava-infecting
geminiviruses have only been recorded in Africa (East African
Cassava Mosaic virus and South African Cassava Mosaic
virus) and India and its neighboring islands (Indian Cassava
Mosaic virus, ICMV). Attacks from the African Cassava
Mosaic Virus (ACMV) often lead to a decline in cassava yield.

Finding a solution to the declining yield in cassava caused
by the ACMV has been, to a large extent, hindered by the
ACMV’s quick and unpredictable mutation. Currently, the
tools used to predict mutation of the ACMV are fragmented
and non-user friendly. Such tools are usually also expensive.
Furthermore, a number of the tools used depend on network
connection, especially Internet, to access and analyse data. As
such, the process of accessing genome databases and that of
analysing the downloaded data on data files is somewhat long.
This often hinders the scientists’ and researchers’ ability to
intervene. It is also important to note that most of the analysis
is done using several software tools because one tool alone
does not give all the desirable output. Therefore, researchers
have to manually move data from one tool to the next and
sometimes some output from some tools may not be
compatible with the file format required as input in the next
tool. Life science researchers will often have to use some
intermediate tool to convert the output into a format the next
tool will accept as input. This often requires more expertise and
knowledge than the life science research is equipped with.

Consequently, even though agricultural and biological
science researchers, in Zambia, have been working to come up
with ways to eliminate or reduce the virus and its effect, the
rapid mutation has always out done them. This is due to the
major challenges the researchers face, which are related to

mailto:gchibawe@gmail.com

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 45

fragmentation, non-user-friendliness and cost of software tools
used. This makes the researchers fail to meet the output rate
required to help come up with solutions quick enough to beat
the virus’ rate of mutation.

In order to overcome the challenge of software tools, this
research aims at developing a computational framework, which
can be used to determine the rate of mutation of the African
Cassava Mosaic Virus (ACMV) in order to provide a tool for
the life scientists who seek solutions to the mutation problem.
We further propose the use of open source libraries, which can
also be used to develop other tools that can be used to solve
other similar problems in the life sciences. For sharing of data
and information we propose the use of XML based protocols.
The rest of our paper is outlined as follows; in section II we
discuss the African Cassava Mosaic Virus, in section III we
present various tools which are currently used in the analysis of
the mutation rate of ACMV, then in section IV we discuss
XML technology, in section V we discuss Biopython, a project
of open source libraries for bioinformatics, in section VI we
discuss our proposed solution, in section VII we bring out our
experiments, in section VIII we bring out preliminary results
and finally make a conclusion in section IX.

II. AFRICAN CASSAVA MOSAIC VIRUS

A. Yield Dwarfing Cassava Viruses

One of the major yield dwarfing factors of the African
cassava is the ACMV. Its prime vector is the African Cassava
Whitefly, Bemisia tabaci [1] [2]. Studies done between the
year 2000 and 2016 indicate that the rate and pattern of
mutation in ACMV are unpredictable, thereby always outdoing
the farmers and researchers. Since the year 2000 there has been
a lot of research on ACMV. Nonetheless, ACMV was first
reported in East Africa in 1894 [3]. Vincent N. Fondong and
Kegui Chen in [4] said that Cassava geminiviruses occur in all
cassava growing areas of Africa and are considered to be the
most damaging vector-borne plant pathogens. J. P. Legg et al.
also said the rapid geographical expansion of the cassava
mosaic disease (CMD) pandemic, caused by cassava mosaic
geminiviruses, has devastated cassava crops in 12 countries of
East and Central Africa since the late 1980s [5] and that there
is definitely need to find a solution to the ACMV problem.
Basavaprabhu L. Patil et al. suggested that the use of RNA
interference (RNAi) is an important strategy for the control of
ACMV [6]. The challenge farmers and researchers face with
the ACMV is its rate of mutation that has been unpredictable
so far. This makes it difficult to find reliable ways to eliminate
it. R. C. Aloyce et al. developed a single tube duplex and a
multiplex PCR for the simultaneous detection of African
cassava mosaic virus (ACMV), East African cassava mosaic
Cameroon virus (EACMCV), East African cassava mosaic
Malawi virus (EACMMV) and East African cassava mosaic
Zanzibar virus (EACMZV), four cassava mosaic
begomoviruses (CMBs) affecting cassava in sub-Saharan
Africa [7]. The unprecedented rate of mutation and
transmission of the ACMV has been aided by the super-
abundant population of the whitefly vector [8].

B. Metagenomics of ACMV

Metagenomics, which is the study of genomic sequences in
order to understand relatedness of organisms, has gained
ground in the past several years. Metagenomics allows
scientists to study microbial diversity and dynamics without
having to perform any wet tests in the artificial media [9] [10]
and is often used to study mutation of viruses. Often
researchers that study this mutation are not specialists in
information technology and as such relevant tools used in
metagenomics must be efficient and user-friendly.

Most tools used by researchers in Zambia to study plant
crop viruses are Internet based. Tools such as NCBI will
depend on factors such as bandwidth and connectivity for
output. Alicai et al. in [11] reported the use of a package called
Phylogenetic Analysis by Maximum Likelihood (PAML),
which Ziheng Yang in [12] said, was not the best for
phylogenetic tree making because you have to manually
modify tree files. With the foregoing, it implies that researchers
have to move data from software to software in order to get all
components of their desired results.

III. RELATED WORKS

From the information given by interaction with scientists
from Mount Makulu Research Station, in Zambia and our own
study of the currently used tools, we outline commonly used
tools and what they are generally used for in this section and
later on in section VI scenario of their uses.

A. Bioedit

Bioedit is an old software tool that is mostly used by
scientists for percentage identity analysis and the study of
phylogenetic relatedness of different DNA sequences. Virus
DNA sequences are compared against other sequences in e-
libraries. If the percentage is less than 80 percent the virus
being analysed is considered to be unrelated to the other similar
viruses in the database. When used in the study of ACMV
Bioedit is often used before using the Sequence Demarcation
Tool to prepare the data for export into the other software tools
used later on in the analysis. Bioedit can import data from a
clipboard as long as the data is in a well-defined format such as
fasta files. Apart from clipboard imports, Bioedit can also read
a number of formats including “.txt”, “.fas”, “.fasta”, “.fst”,
“.xml”, “.meg” (from Mega) as long as they are fasta file
formats. Bioedit also has a NCBI web service capability and it
allows for sequences to be viewed in many forms including
colour shades on alignments.

B. Mega 6 or 7

Mega 6 is a sequence alignment tool. It aligns gene
sequences for comparison of related positions. It is also used
for making of phylogenetic trees. Mega 7 can read from many
file formats but “.txt”, “.xml”, “.csv” formats are not supported.
Though Mega 7 has many things it can do, it does not
communicate directly with NCBI. Therefore, data must first be
exported to a file before it is imported into Mega 7.
Furthermore, to achieve basic alignment using Mega tools
requires the use of a basic specific plugin.

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 46

C. Sequence Demarcation Tool (SDT)

SDT has all the features contained in Bioedit and Mega 6
but is visually more pleasant. SDT is also used mostly for virus
percentage identity comparisons. Any percentage above 80
percent may be interpreted as a prediction of relatedness of one
or more viruses being compared with a given virus. Such a
percentage may also mean the viruses being compared are the
same species and strain. A percentage less than 40 will mean a
lack of relatedness of the viruses under comparison by DNA or
RNA. Apart from being able to align the sequences, SDT also
presents pairwise comparison using colour codes. This makes it
easy for laymen to understand the identity comparisons.
However, the matrix presentation of SDT is not that easy to
understand for laymen. SDT can read from many file formats
including “.txt”, “.meg”, and “.fas” but does not have a NCBI
web service capability and so data has to first be exported to
text files before importing into SDT.

D. Geneious

Geneious is a commercial genome analysis software tool. It
has web service support for genome data. It has support for
multi file formats for output such as “.txt”, “.geneious” and
“.csv”. It can do all what the previously discussed tools can do
from alignments to phylogenetic trees. It however lacks in the
look and feel of outputs when compared to the other tools such
as that of Mega. For example, the presentation of the alignment
output does not have a pleasant look and feel but the
phylogenetic tree does. Geneious also has a NCBI web service
capability and can also create a local library for offline use.

E. National Center for Biotechnology Information

The National Center for Biotechnology Information
(NCBI) advances science and health by providing access to
biomedical and genomic information [13]. In the study of the
mutation of ACMV, NCBI is used just for percentage identity
of microorganisms by comparison with existing organisms
already fed into the NCBI genome library. NCBI gives a
sequence-by-sequence relatedness of microorganisms like virus
strains. Data from NCBI can also be used for DNA/RNA
sequence alignment. Data from NCBI can be exported to many
file formats including “.txt”, “.fas”, “.csv”, “.asn”, “.json”, and
“.xml”. NCBI provides both data for molecular biology as well
as tools to analyse and study this data.

IV. EXTENSIBLE MARKUP LANGUAGE.

eXtensible Markup Language (XML) is essentially
a markup language that defines and outlines a set of rules for
encoding data files in a format that is both human
and machine-readable. XML was designed to be both human-
and machine-readable. For this reason, XML is increasingly
becoming important norm and standard for the exchange of a
wide variety of data on the Web and distributed applications
[14] [15] [16] [17] [18]. It has also found use in many
applications because it is not programming language and
machine specific [19] [20] [21]. Using XML, disparate systems
can communicate with each other by exchanging XML
messages. Furthermore, XML can also be used to store the data
persistently. XML protocols have been developed which can be

used to develop solutions that allow two or more applications
to communicate in a distributed environment, using XML as
the language of encapsulation, storage and transportation.
Thus, XML can be used for both storage and transportation of
such data.

V. BIOPYTHON.

Biopython is a collection of open source bioinformatics

tools written in an object-oriented scripting language called

Python. It is a project, which dates as far back as August 1999

[22] [23]. Biopython makes available libraries to people doing

computational Python for biological data. It can be

downloaded for free from http://www.biopython.org. It is a

project where many people have contributed and are still

contributing making it a library rich project. Most, if not all, of

the analysis tools required for bioinformatics can be built

using Biopython libraries of the Python language [24] [25]. A

number of modules can be integrated to make any

bioinformatics project complete. It has modules for creating

both online and standalone tools. The modules, which we

desired to use for the purposes of this research, are

summarised in figure 5. There is no need to create the science

behind the modules because it has already been done and

made ready to use.

VI. MATERIALS AND METHODS

The main aim of this research is to develop a computational
framework, which can be used to determine the rate of
mutation of the African Cassava Mosaic Virus (ACMV) in
order to provide a tool for the life scientists who seek solutions
to the mutation problem. To achieve this, the first thing we did
was to conduct a study of online and standalone software tools
used by Zambian agricultural and biological researchers to
analyse the ACMV genome. Based on this study we then
propose a computational framework for the prediction of the
mutation of the ACMV and use the framework and open
source libraries to start the development of a comprehensive
user-friendly tool.

To better understand the usage scenarios, we had audience
with researchers from Mount Makulu Research Station in
Zambia to find out the procedure used when analyzing genome
data for the prediction of the ACMV mutation rate. We will
briefly describe the procedure used.

A. CASE OF MT. MAKULU RESEARCH STATION

The researchers from Mount Makulu Research Station took
the following steps in analyzing ACMV genome data:

1. Percentage Identity Analysis

Percentage identity is the quantitative similarity between at
least two DNA, amino acids and other genetic sequences.
There are several genome libraries, globally, which include the
NCBI [13]. Researchers compare genome sequences of
organisms, which they are studying, with organisms whose
genome data has already been stored on genome libraries. This
is done to check whether their organism has already been
studied or it is a newly discovered one. This is also done to

https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/File_format
https://en.wikipedia.org/wiki/Human-readable_medium
https://en.wikipedia.org/wiki/Machine-readable_data

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 47

collect data of similar organisms for possible mutation studies.
The retrieval of genome data from genome libraries is known
as blast. In the same vain, the Mount Makulu researchers were
always interested in first knowing whether the organism they
were studying had already been recorded somewhere or it was
a newly discovered organism altogether. In order to do this,
they fed their genetic sequence in the ncbi library for
percentage identity. Bioedit is another software tool
(standalone), which they could use for percentage identity of
multiple sequences, which have been downloaded from ncbi
[26] [27]. However, they only used Bioedit to export the
sequences to a fasta format file, which was then imported into
SDT for percentage identity analysis. The researchers leveraged
on ncbi only for downloads of similar sequences and not for
identity analysis. Using SDT, if their sequence got at least 80
percent identity they deduced that the organism under study
was either related to those in the library, which had at least 80
percent hit or it was exactly the same as one of the existing
organisms. If the relatedness was less than 40 percent, they
supposed that their organism could be a new discovery. The
multiple sequences of interest identified from the ncbi were
saved on a file in fasta format for input in Mega 6 or Geneious,
for sequence alignment. Although these researchers used only
ncbi, it is not the only genome data library; others like Swis-
Prot and ExPASy exist [22].

2. Sequence Alignment

After the identity analysis, the Mount Makulu researchers
proceeded to have their multiple genetic sequences aligned in a
manner that would allow them to identify pattern consistency
or inconsistency which would lead to conclusions on whether
mutation occurred or not. The software tools they generally
used for sequence alignment are Mega 6 and Geneious.

3. Pairwise Analysis

Following the sequence alignment is the analysis of
sequences in pairs for relatedness. SDT is used for this purpose
because it displays the results of pairwise analysis in nice
colour density grids, which the Mount Makulu researchers find
easy to interpret because they are laymen in computer
programming. The other reason for their love of SDT is its
visual results, which are easy to display for explanation to other
computer science laymen.

4. Evolutionary Relationship Analysis

Once the genetic relatedness of sequences has been
established and the multiple sequences have been aligned for
consistency check and pairwise analysis, the final stage by the
Mount Makulu researchers was to show evolutionary
relationship of the many strains represented by the individual
sequences. This was achieved by creating a phylogenetic tree
using Geneious.

The four stages of genome data analysis have been
summarised using the flowchart in figure 1. Each process shape
contains a stage of the genome data analysis and the software
tools used by Mount Makulu Research Station researchers to
achieve their desired output. Some of these software tools can
do more than what the researchers use them for.

B. Proposed solution: OPEN SOURCE SOFTWARE

 (Bio-pyhon libraries based tool)

We observed that some of the challenges in arriving at a

timely solution to the ACMV are the rate at which the virus

mutates against the software tools that give output slowly and

the availability of affordable fast output software tools. In

striving to provide a solution to the challenges, we delved into

the study of Biopython libraries to find cheaper and quicker

ways of carrying out the same analyses described in sub-

section A of section VI. We discovered that the analyses could

be done using some Biopython modules, methods, functions

and few other integrated open source tools as described in sub-

sections 1 to 4 that follow.

1. Percentage Identity Analysis

Biopython has a function qblast() that calls the NCBI
Internet blast module Bio.Blast.NCBIWW. This function can
successfully be used to create a web service to be used for
searching the NCBI library for related sequences of any
microbe being studied. The NCBI genome library can be
downloaded onto a local storage using Biopython. Once this is
done, a blastx Biopython wrapper Bio.Blast.Applications
module can be used to create command-line strings for blast
purposes (identity searches from the local genome library).
Blast is faster if the genome data sits on a local storage. The
blast output using Biopython libraries include XML. This

Figure 1: Stages of Genome data analysis carried out by Mt.

Makulu Research Station researchers. Research software tools

included

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 48

makes it possible to come up with a framework that helps
various software tools to communicate, knowing that XML is
universal standard. The blast output can successfully be parsed
using Biopython XML parsers when carrying out analyses.

2. Sequence Alignment

Using Biopython libraries, sequence alignment (from few
sequences to many) can be achieved by utilising
Bio.AlignIO.read() function (for very few sequences) and
Bio.AlignIO.parse() function (for multiple sequences). The
output can be written to a file of any fasta format including
XML using Bio.Align.Write() or Bio.Align.convert()
functions. Bio.Entrez is a parser for parsing the XML
alignment files. Biopython has command-line tools for multiple
sequence alignment; Clustalw and Clustalx are the most
popular. They must be installed on a local pc first before an
alignment is done. Bio.Align.Applications module in
Biopython has a wrapper for the tools. When we tested
alignment using Mega 6 and Geneious, it took over an hour to
have the sequences aligned. Using Clustalx command-line
tools took only slightly over 30 minutes, during our
comparison test.

3. Pairwise Analysis

In order to carry out pairwise analysis using Biopython, the
Bio.pairwise2 module does the work. The input is mostly a
fasta file but the module allows programmers to create their
own functions. This is a plus in that during the creation of our
own functions we could use XML files which is our proposed
file share standard. Pairwise analysis is just an alternative to the
sequence alignment described in sub-section 2 of section VI
(B).

4. Evolutionary Relationship Analysis

Evolutionary relationships are easily presented using
phylogenetic trees. Biopython has Bio.Phylo module for
phylogenetic tree creation. PhyloXML feature of the same
module helps to create XML phylogenetic trees. Phylo module
can read from .dnd and .xml files.

VII. EXPERIMENTS

A. Data

We decided to run experiments, ourselves, with the
software tools used by Mount Makulu Research Station
researchers and went on to run more experiments but this time
using biopython libraries to compare rate of output. During our
experimentation we used ninety-two ACMV sequences, which
we obtained from NCBI through an online nucleotide blast of a
virus with accession number “AJ717542.1”. A researcher from
Mount Makulu Research Station gave the accession number
and its genetic sequence to us. For any reference, the same data
can still be obtained through a nucleotide blast on the NCBI
site by either entering the accession number “AJ717542.1” or
the sequence string in appendix 5. After the nucleotide blast we
saved the data in a fasta format text file. It is this file that we
ran alignment experiments with Mega 7, SDT and Geneious.

B. Experiments

When running a sequence alignment SDT and Geneious
were able to read straight from the “.txt” file that we had saved.
For Mega 7, we had to use a “.fas” file. We experimented with
producing a phylogenetic tree using Geneious because the
Mount Makulu researchers told us it was the only one they
used for production of the phylogenetic trees. At this stage of
our research we focused much on sequence alignment,
comparing between that of the three preexisting software tools
and that of the biopython libraries, which we tumbled on
during our reading.

We implemented both the non-XML file output and the
XML-file output of a blast and sequence alignment using
biopython libraries. The code is presented in appendices 1 and
4. During our implementation we used PyCharm and
Anaconda-Navigator Integrated Development Environments
(IDE). We created a Python script to carry out online blast and
parsed the handled result into aligned sequences. Our
biopython code first searched NCBI for sequences that match
that of the ACMV with accession number AJ717542.1 at
expectation value threshold less than 0.04. The matched
sequences were then aligned against our initial AJ717542.1
ACMV sequence.

After experimenting with online sequence blast and
alignment we went on to experiment with carrying out
sequence alignments using a file of already downloaded
sequences using command line tools. We did this to compare
rate of output between that of using online sources and that of
using locally stored data.

The results of all experimentations are presented in section
VIII (Preliminary Results).

VIII. PRELIMINARY RESULTS

This section presents results, at this stage of our research,
from the experiments carried out and described in section VII.
After experimenting with three preexisting software tools that
are used by local researchers, in Zambia, to study genome data
of the ACMV we found that the total time taken to go through
all the desired steps was at least nine (9) hours; one process ran
infinitely. Sequence alignment alone took an average of 2
hours 4 minutes with each software. When we used libraries
from the proposed biopython we ran through all the steps
within three (3) hours, which is at most one-third the time it
took while using the preexisting software tools. Sequence
alignment took an average of 38 minutes. At this stage of our
research we implemented the nucleotide blast, multiple
sequence alignment and production of phylogenetic trees
(evolutionary analysis). Figures 2 to 4 summarise results from
our experimentation. Figure 2 is a bar chart showing average
time it took to align 92 sequences using the three preexisting
software tools (Mega 7, SDT and Geneious). Mega 7 had the
best average time of all the three. We then compared Mega 7
results with those of online blast/alignment and alignment from
locally saved data. Figure 3 shows that the online
blast/alignment had the best duration with an average time of 3
minutes 20 seconds. The alignment of locally saved data gave
us an average of 38 minutes 20 seconds.

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 49

Generally, we observed that it is possible for us to use the
XML standard for data transfer between modules and functions
of Biopython. This would make data sharing universal because
XML is universal. Figure 6 presents a summary of the
proposed solution and computational framework that uses
Biopython libraries (modules and functions). File sharing will
be done through XML files. One XML output of one module

or function will serve as input into the next module or function
and this will go on until the final desired output or visual
representation. Appendix 4 shows one of the XML output, after
a blast. Listing 1 is a XML schema for a PhyloXML
evolutionary comparison tree. By the end of this research the
final product will be a software tool with graphical user
interfaces for easy use by computer science laypersons.

Figure 2: Comparison of average sequence alignment duration for the three preexisting software tools used by Mount Makulu

Research Station researchers.

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 50

Figure 3: Comparison of sequence alignment duration of Mega 7 against the online blast/alignment and the alignment of locally

saved data

Figure 4: Scatter plot for the data in figure 3, shows stability in output for each scenario

Listing 1: XML Schema for PhyloXML Tree

<?xml version = "1.0" encoding = "UTF-8"?>

<xsi:schema xmlns="http://www.phyloxml.org" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.phyloxml.org http://www.phyloxml.org/1.10/phyloxml.xsd">

 <xsi:element name = "phyloxml " type = "schema namespace string">

 <xsi:element name = "phylogeny rooted = 'false'" type = "xsi:string">

 <xsi:element name "clade" type = "xsi:string">

 <xsi:element name = "clade" type = "xsi:string">

 <xsi:complexType>

 <xsi:sequence>

 <xsi:element name = "name" type = "xsi:string" />

 <xsi:element name = "branch_length" type = "xsi:string" />

 </xsi:sequence>

 </xsi:complexType>

 </xsi:element>

 </xsi:element>

 </xsi:element>

 </xsi:element>

</xsi:schema>

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 51

Figure 5: Output of Biopython ascii phylogenetic tree

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 52

The implementation of XML blast and saving the output to

a file is a step in our desired direction of using XML for file

sharing between applications in our framework or between

steps when we create a comprehensive and user-friendly tool

that will be used to study the mutation of the ACMV.

Appendix 4 has the sample code for saving to XML after a

blast.

IX. CONCLUSION

In this research we propose a computational framework that
uses preexisting tools to offer a comprehensive user-friendly
tool that will be used to determine the rate of mutation of the
African Cassava Mosaic Virus. After analysis of the steps and
procedures involved in the analysis of the mutation of ACMV
we further propose the use of Biopython, which has libraries
that have many capabilities from sequence alignment to
pairwise analysis of genome data and phylogenetic tree
production. We observed that downloading the genome
libraries to local servers would make genome analysis faster.
Nonetheless, the combination of online nucleotide blast and
sequence alignment when using Biopython libraries proved to
be faster than carrying out sequence alignment using a local
genome data library. The use of a local genome library with
biopython to carry out an alignment was faster than using the
preexisting software tools, which are used by Mount Makulu
Research Station researchers. We take note that genome
libraries like NCBI have computers optimized for high-speed
search of data unlike our usage of our simple RAM strained
laptops during our experimentation. We, therefore, conclude
that if we create a local optimized scenario we will get results
faster than we did during the online blast/alignment. We also
observed that the use of XML files would help with the various
components of the software tools communicating with each
other in form of output to input relationship. Fortunately,
Biopython has methods for downloading genome data and can
read from a XML file as initial input and at any level of
analysis. This is a score to meet our aim of developing a
computational framework that uses preexisting tools to offer a
comprehensive user-friendly tool. This tool will be used to
determine the rate of mutation of the African Cassava Mosaic
Virus.

Biological science and agricultural science researchers in
Zambia at the time of this research used manual feeding of data
into each software tool used to analyse the genome data of the
ACMV for its mutation. Developing a comprehensive user-
friendly tool that will be used in the study of the mutation of
ACMV should improve the rate at which solutions against the
virus are provided. This will help in enhancing resistance to the
virus, in the cassava, and thus improve cassava yields.

For future work we plan to implement data sharing using an
XML based protocol for sharing information between the
different stages of the genome data analysis. The blast and
alignment output in XML was tested successfully. Using the
said protocol, we can implement a distributed solution that

takes advantage of high performance architectures and hence
enhance performance of the integrated tool. We plan to create
local optimized high performance architecture to provide faster
output of sequence alignments. We also plan to do a survey to
get feedback from the life science researchers on how to better
the comprehensive customized tool. In our next report we will
also discuss the science behind the sequence analysis steps in
terms of the algorithms used to get our code work.

Figure 6: Proposed solution and computation framework of

open source tools using Biopython libraries

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 53

REFERENCES

[1] C. A. Omongo, R. Kawuki, A. C. Bellotti, T. Alicai, Y.
Baguma, M. Maruthi, A. Bua, and J. Colvin, “African
cassava whitefly, bemisia tabaci, resistance in african and
south american cassava genotypes,” Journal of integrative
agriculture, vol. 11, no. 2, pp. 327–336, 2012.  

[2] I. Y. Rabbi, M. T. Hamblin, P. L. Kumar, M. A. Gedil, A.
S. Ikpan, J.-L. Jannink, and P. A. Kulakow, “High-
resolution mapping of resis- tance to cassava mosaic
geminiviruses in cassava using genotyping-by-
sequencing and its implications for breeding,” Virus
research, vol. 186, pp. 87–96, 2014.  

[3] J. Legg and J. Thresh, “Cassava mosaic virus disease in
east africa: a dynamic disease in a changing
environment,” Virus research, vol. 71, no. 1-2, pp. 135–
149, 2000.

[4] V. N. Fondong and K. Chen, “Genetic variability of east
african cassava mosaic cameroon virus under field and
controlled environment conditions,” Virology, vol. 413,
no. 2, pp. 275–282, 2011.

  

[5] J. Legg, S. Jeremiah, H. Obiero, M. Maruthi, I.
Ndyetabula, G. Okao- Okuja, H. Bouwmeester, S.
Bigirimana, W. Tata-Hangy, G. Gashaka et al.,
“Comparing the regional epidemiology of the cassava
mosaic and cassava brown streak virus pandemics in
africa,” Virus research, vol. 159, no. 2, pp. 161–170,
2011.  

[6] B.L.Patil,B.Bagewadi,J.S.Yadav,andC.M.Fauquet,“Mappi
ngand identification of cassava mosaic geminivirus dna-a
and dna-b genome sequences for efficient sirna
expression and rnai based virus resistance by transient
agro-infiltration studies,” Virus research, vol. 213, pp.
109– 115, 2016.  

[7] J. P. Legg, P. Sseruwagi, S. Boniface, G. Okao-Okuja, R.
Shirima, S. Bigirimana, G. Gashaka, H.-W. Herrmann, S.
Jeremiah, H. Obiero et al., “Spatio-temporal patterns of
genetic change amongst populations of cassava bemisia
tabaci whiteflies driving virus pandemics in east and
central africa,” Virus Research, vol. 186, pp. 61–75, 2014.

[8] R. Aloyce, F. Tairo, P. Sseruwagi, M. Rey, and J.
Ndunguru, “A single- tube duplex and multiplex pcr for
simultaneous detection of four cassava mosaic
begomovirus species in cassava plants,” Journal of
virological methods, vol. 189, no. 1, pp. 148–156, 2013.
 

[9] F.Valenzuela-Gonza ́lez,M.Mart ́ınez-
Porchas,E.Villalpando-Canchola, and F. Vargas-Albores,
“Studying long 16s rdna sequences with ultrafast-
metagenomic sequence classification using exact
alignments (kraken),” Journal of microbiological
methods, vol. 122, pp. 38–42, 2016.  

[10] K. Hipp, P. Rau, B. Scha ̈fer, J. Pfannstiel, and H. Jeske,
“Translation, modification and cellular distribution of two
ac4 variants of african cassava mosaic virus in yeast and
their pathogenic potential in plants,” Virology, vol. 498,
pp. 136–148, 2016.  

[11] T. Alicai, J. Ndunguru, P. Sseruwagi, F. Tairo, G. Okao-
Okuja, R. Nan- vubya, L. Kiiza, L. Kubatko, M. A.
Kehoe, and L. M. Boykin, “Cassava brown streak virus
has a rapidly evolving genome: implications for virus
speciation, variability, diagnosis and host resistance,”
Scientific reports, vol. 6, p. 36164, 2016.  

[12] Z. Yang, “Phylogenetic analysis by maximum likelihood
(paml),” 2000.  

[13] F. Pina-Martins and O. Paulo, “Ncbi mass sequence
downloader–large   dataset downloading made easy,”
SoftwareX, vol. 5, pp. 80–83, 2016.  

[14] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and
F. Yergeau,   “Extensible markup language (xml) 1.0,”
2008.  

[15] S. Sprenkle, “extensible markup language (xml),” 2006.
 

[16] A. Rooney, “Extensible markup language (xml),”
Foundations of Java   for ABAP Programmers, pp. 145–
164, 2006.  

[17] A. Hoekman, “Journal publishing technologies: Xml,”
1999.  

[18] E.Pardede, J.W.Rahayu, and D.Taniar,
“Xmldataupdatemanagement   in xml-enabled database,”
Journal of Computer and System Sciences,   vol. 74, no.
2, pp. 170–195, 2008.  

[19] S. Abiteboul, G. Gottlob, and M. Manna, “Distributed
xml design,”   Journal of Computer and System Sciences,
vol. 77, no. 6, pp. 936–964, 2011.  

[20] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: design, implementation,
and experience,” Parallel Computing, vol. 30, no. 7, pp.
817–840, 2004.

[21] M. Gertz and J.-M. Bremer, “Distributed xml repositories:
Top-down design and transparent query processing,”
Department of Computer Science, 2003.

[22] J. Chang, B. Chapman, I. Friedberg, T. Hamelryck, M. De
Hoon, P. Cock, T. Antao, and E. Talevich, “Biopython
tutorial and cookbook,” 2010.

[23] S. Bassi, Python for bioinformatics. Chapman and
Hall/CRC, 2017.

[24] H. C. Jubb, A. P. Higueruelo, B. Ochoa-Montan ̃o, W. R.
Pitt, D. B. Ascher, and T. L. Blundell, “Arpeggio: a web
server for calculating and visualising interatomic
interactions in protein structures,” Journal of molecular
biology, vol. 429, no. 3, pp. 365–371, 2017.

[25] A. P. Hutchins, R. Jauch, M. Dyla, and D. Miranda-
Saavedra, “glbase: a framework for combining, analyzing
and displaying heterogeneous genomic and high-
throughput sequencing data,” Cell Regeneration, vol. 3,
no. 1, p. 1, 2014.

[26] C. Sundaravadivelan, E. Murugesh, M. Preethy, and P.
Sivaprasath, “Ariadne merione ecdysone receptor (amecr)
protein: An in silico approach for comparison of agonist
and antagonist compounds,” Egyptian Journal of Basic
and Applied Sciences, vol. 4, no. 4, pp. 288–296, 2017.

[27] M. Najafi, G. R. Mianji, and Z. A. Pirsaraie, “Cloning and
comparative analysis of gene structure in promoter site of
alpha-s1 casein gene in naeinian goat and sheep,” Meta
gene, vol. 2, pp. 854–861, 2014.

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 54

print(f'{Fore.RED}****Alignment****{Style.RESET_ALL}')

 print('sequence: ', alignment.title)

 print('length: ', alignment.length)

 print('Identity:', hsp.identities)

 print(round(hsp.identities / alignment.length * 100, 2), '%

identity')

 print("\033[1;41m" + hsp.query + "\033[1;m")

 print(hsp.match)

 print("\033[36m" + hsp.sbjct + "\033[0m")

 result_handle.close()

 print("")

 print("")

print("***

****************")

 print("DONE!")

textBox = Text(blastAlign, height=1, width=20)

textBox.pack()

buttonCommit = Button(blastAlign, height=1, width=10,

text="Blast", fg="blue", command=lambda: blast_align())

buttonCommit.pack()

mainloop()

coding=utf-8

from Bio import Phylo

from Bio.Phylo.PhyloXML import Phylogeny

handle = "Path_to_file/acmv2018.xml"

acmv_tree = Phylo.read(handle, 'phyloxml')

#Phylo.draw(acmv_tree)

acmv_tree.root_at_midpoint()

acmv_tree.ladderize(reverse=True)

acmv_tree.clade[0, 0, 0, 0].color = "red"

acmv_tree.clade[0, 0, 0, 0].width = 1

acmv_tree.clade[0, 0, 0, 1].color = "blue"

acmv_tree.clade[0, 0, 0, 1].width = 1

acmv_tree.clade[0, 0, 0].color = "green"

acmv_tree.clade[0, 0, 0].width = 1

acmv_tree.clade[0, 0, 1].color = "yellow"

acmv_tree.clade[0, 0, 1].width = 1

acmv_tree.clade[0, 0].color = "red"

acmv_tree.clade[0, 0].width = 1

coding=utf-8

#Import GUI class

from tkinter import *

#Import color class

from colorama import Fore

from colorama import Style

#Import NCBI online blast module

from Bio.Blast import NCBIWWW

#Import NCBI XML blast module

from Bio.Blast import NCBIXML

#Initialise method to create GUI

blastAlign = Tk()

#Define the blast function

def blast_align():

 """

 :return:

 """

 print("Blasting....")

 #Define the function to retrieve the accession number from the

GUI input variable

 def retrieve_input():

 """

 :return:

 """

 accessionNumber = textBox.get("1.0", "end-1c")

 return accessionNumber

 #Retrieve the accession number from the GUI input variable

 retrieve_input()

 #create a data handle for the blast result

 result_handle = NCBIWWW.qblast("blastn", "nr",

 retrieve_input(),

 word_size=7,

 gapcosts='5 2',

 nucl_reward=1,

 nucl_penalty='-3',

 expect=1000)

 blast_records = NCBIXML.read(result_handle)

#Can use the Expectation Value Threshold to limit number of

output; here it is commented out below

 # E_VALUE_THRESH = 0.04

 #carry out the alignment after data has been appended to a

handle after blast

 for alignment in blast_records.alignments:

 for hsp in alignment.hsps:

 # if hsp.expect < E_VALUE_THRESH:

APPENDICES

Appendix 1: Python code for biopython blast and alignment

Appendix 2: Biopython code for an ascii phylogenetic tree

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 55

coding=utf-8

from Bio import Phylo

from Bio.Phylo.PhyloXML import Phylogeny

dnd_file_input = " Path_to_file /Grey-Mega7b.dnd"

xml_file_output = " Path_to_file /Grey-

Mega7bPhyloXML.xml"

PhyXMLTree = Phylo.read(dnd_file_input, 'newick')

Phylo.convert(dnd_file_input, 'newick', xml_file_output,

'phyloxml')

phyTreeFromXML = Phylogeny.from_tree(PhyXMLTree)

print(PhyXMLTree)

coding=utf-8

from Bio.Blast import NCBIWWW

result_handle = NCBIWWW.qblast("blastn", "nr",

"AJ717542.1", format_type="XML")

save_file = open("Path_to_file /acmv_blast.xml", "w")

save_file.write(result_handle.read())

save_file.close()

result_handle.close()

acmv_tree.clade[0].color = "orange"

acmv_tree.clade[0].width = 1

acmv_tree.clade[1].color = "blue"

acmv_tree.clade[1].width = 1

acmv_tree.clade[1, 0, 0, 0, 0, 0].color = "purple"

acmv_tree.clade[1, 0, 0, 0, 0, 0].width = 1

acmv_tree.clade[1, 0, 0, 0, 0, 1].color = "fuchsia"

acmv_tree.clade[1, 0, 0, 0, 0, 1].width = 1

acmv_tree.clade[1, 0, 0, 0, 0].color = "red"

acmv_tree.clade[1, 0, 0, 0, 0].width = 1

acmv_tree.clade[1, 0, 0, 0].color = "green"

acmv_tree.clade[1, 0, 0, 0].width = 1

acmv_tree.clade[1, 0, 0].color = "yellow"

acmv_tree.clade[1, 0, 0].width = 1

acmv_tree.clade[1, 0].color = "orange"

acmv_tree.clade[1, 0].width = 1

acmv_tree.root.color = "gray"

Phylo.draw(acmv_tree)

AATGTATCGAAGCCCAGATGTTCCTAAGGGCTGT

GAAGGCCCATGTAAGGTTCAGTCGTATGAACAG

GGGGATGATGTTAAGCACACTGGTATGGTTCGA

TGTGTCAGTGATGTTACGCGTGGGCCAGGCATTA

CCCATAGAGTCGGGAAGAGGTTTTGTGTGAAGT

CCATATATATATTGGGCAAGATCTGGATGGATG

AGAATATCAAGAAGCAAAATCATACGAACCATG

TTATGTTCTTCCTCGTGCGAGATAGAAGGCCTTA

TGGGCCGAGCCCACAAGATTTTGGACAAGTGTT

CAACATGTTTGATAATGAGCCTACTACGGCAACT

GTGAAGAATGATCTTAGGGACCGGTATCAGGTG

TTACGTAAATTCTATGCGACTGTTGTTGGTGGAC

CCTCTGGGATGAAGGAACAAGCTCTGGTTAAGA

GGTTTTTTAGGATCAATAATCATGTAGTGTATAA

TCATCAGGAACAGGCCAAGTATGAGAATCATAC

TGAGAATGCGTTGTTATTGTATATGGCATGTACA

CATGCCTCAAATCCTGTGTATGCTACGCTGAAAA

TACGCATCTATTTCTATGATGCAGTGACAAATTA

ATAAAGGTTGAATTTTATTGCATGTTGCTCCGTA

ACTTGGAGCGTGTTTAGTAATACATCGTACAGAA

CATGATCAACAGATTGAAGTACAGTGTTAATGG

AAATAACGCCTATCATATCTAAATACTTGAGCAC

TTGAGATCTAAATACTCTTAAGAAAAGACCAGT

CTGAGGCCGTAAGGTCGTCCAGACCTTGAAGTT

GAGAAAACACTTGTGAATCCCCAATGCCTTCCG

GATGTTGTGGTTGAACCGTATCTGGATTGTGATG

ATGTCGTGGTTCATGTTCCCTGGCCTCTTGTCGT

GGTTGGTGATTGCGAAATAGAGGGGATTTGTTAT

TTCCCAGGTAAAAACGCCATTCGTTGCTTGAGGC

GCAGTGATGAGTTCCCCTGTGCGAGAATCCATG

GTTGATGCAGTCGATGTGGAGATAGAACGAGCA

GCCGCATTCGAGGTCTACCCGCCTACGTCTGATG

GCCCTGGTCTTCGCTGTGCGGTGTTGGACTTTGA

TGGGCACTTGAGAACAATGGCTCGTGGAGGGTG

ACGAAGGTGGCATTCTTTAAAGCCCAGGCTTTAA

GGGACTGGTTCTTTTCCTCATCCAGAAACTCTTT

ATATGATGATGTTGGTCCTGGATTGCAGAGGAA

GATAGTGGGAATGCCGCCTTTAATTTGAATCGGC

TTTCCGTACTTTGTATTGCTTTGCCAGTCCCTTTG

Appendix 3: Biopython code for outputting a PhyloXML tree

Appendix 4: Sample code for outputting XML after a blast

Appendix 5: Genetic sequence for ACMV with accession
number “AJ717542.1”

Chibawe G. et al./ Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018)

Zambia (ICT) Journal, Volume 2 (Issue 1) © (2018) 56

GGCCCCCATGAATTCTTTGAAGTGTTTGAGGTAG

TGGGGGTCGACGTCATCAATGACGTTGTACCAG

GCGTCGTTGCTGTAGACCTTTGGACTGAGATCCA

GGTGTCCACATAAATAATTATGTGGTCCCAATGA

CCTGGCCCACATGGTCTTCCCTGTACGACTATCA

CCTTCTAGAACAATACTGTTGGGTCTCCAAGGCC

GCGCAGCGGAACCCATCACGTTCTCGGAAACCC

AGACTTCAAGTTCCTCAGGAACGTTAGTAAAAG

AGGATGATAAGAACGGACTAACGTAAGTTTGGG

GCGGAGCCTGGAAGATTCGATCTGCGTTAGCAG

ATATGTTATGGAACTGTAAAAAAAAGGACTTGG

GATCTTTTTCTTTGATAATTTGAAGAGCTTCGGA

TTTCGAAGAAGCATTCAACGCGTCTGCATAGACC

TGAGCTAAATGCTGGCCCTCCCCCCTGGCACTTC

GGGCATCGACTTGGAAAATTCCATCGTCAAGAA

ATTCCCCTCCCTTTTCAATGTAAGCCTTGACATC

ACCGGATGGCCGCGCCCGAAAAAGCAGGTGGAC

CCCACCACATGGCCGCACGCGTAAAAGAAAGTG

GTCCCCGCGCACTGGTATTGGTCGGCCAGTCATA

TTCACGCGTGGAAGTCTAGATATTTGTGGGTTGA

CGTTATATACTTCGTCGCGAAGTAGTGGAGCGCG

TCAACATGTGGGATCCATTGTTGAACGATTTTCC

CGAAACCGTTCACGGTTTCCGTTCTATGCTTGCT

GTTAAATACCTGTTACATCTTGAACAGGAATACG

ATCGCGGTACTGTCGGGGCTGAGTATATACGGG

ATCTAATAGGGGTGCTACGGTGTAAGAGTTATGT

CGAAGCGACCAGGAGATATAATAATCTCAACAC

CCGTATCCAAGGTGCGGAGGAGGCTGAACTTCG

ACAGCCCATACACGAACCGTGTTGTTGCCCCCAC

TGTCCGCGTCACCAGAAGCAAAATATGGGCCAA

CAGGCCCATGTATCGGAAGCCCAAGATGTACAG

GGACGATGATTTAGCGCCCTGAATGTTCGGATG

GAAATGTGTTGATCTGGATGGGGAAATGAGATC

GAAGAATCTGGGGTTGGTACATTGGAACTTGCCT

TCGAATTGGATGAGAACATGGAGATGAGGCACC

CCATCCTGATGTAGTTCTCTGCAAACCCTAACGA

ATTTGATATTCGTCGGATAAGCAAAAGCTTTTAA

TTGGGAAAGAGCCTCTTCCTTTGTTAATGAGCAG

CGGGGATAGGTGATGAAATAATTTTTGGCATTTA

TTTGAAAACGACCGGCTCTTGGCATATTTGCTGT

CGTTTTGGATCGGGGGACACTCAAAACTCCAGG

AGAACGGTGGAATGGGGGGCATTATATAGGATG

TCCCCCAATGGCATATGTGTAAATAGGTAGAAG

TCCATTCAAAATTTGAATTGCGAATATTGGCGGC

CATCCGATTAATATT---

