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Abstract— Location is the process of estimating the position 
of a device or user in a wireless network. Location is critical for 
many applications and services in 5G and beyond wireless 
communications. However, localization faces many challenges 
in complex and dynamic environments, such as multipath 
propagation, non-line-of-sight (NLOS) conditions, and limited 
bandwidth and power resources. Machine learning (ML) is a 
promising technique that can improve location performance 
and efficiency by exploiting the large amount of data available 
in wireless networks. In this article, state-of-the-art ML 
localization techniques are reviewed. In addition, recent ML 
localization techniques are compared, and observations from 
the comparison are delineated. Additionally, challenges with 
possible recommendations are presented. 

Keywords—B5G, machine learning, localization, localization 
in B5G 

I. INTRODUCTION

Location in wireless communications is the process of 
determining the position and orientation of wireless devices 
or users in a wireless network [1]. Location in wireless 
communications can be used for various purposes, such as 
location-based services, network optimization, resource 
allocation, security, and navigation. Location in wireless 
communication can be done by various methods, such as 
using Global Positioning System (GPS), using wireless 
signals such as received signal strength, angle of arrival, 
arrival time, etc. [2], [3], using machine learning algorithms 
(such as deep learning, reinforcement learning, etc.), or using 
hybrid methods that combine multiple methods [4]. Location 
is important in B5G because it enables a variety of new 
applications that rely on location information, such as 
autonomous driving, smart city, industrial automation, virtual 
reality, e-health, etc. [5]. In 5G and beyond (B5G) wireless 
communications, location is critical to enable various 
applications and services that require high location accuracy, 
reliability, scalability and efficiency, such as connected 
communities, smart environments , vehicle autonomy, asset 
tracking, medical services, military and crowd detection [6], 
[7]. Performance improvement should be made possible 
through beamforming, interference management, resource 
allocation and network optimization [5]. 

One of the challenges of localization in B5G wireless 
communications is the complexity and variability of the 
radio propagation environment, especially at mmWave and 
THz frequencies. To overcome this challenge, 
some 

emerging techniques have been proposed, such as 
reconfigurable intelligent surfaces (RIS), integrated 
communication and localization (ICL), and machine learning 
(ML) [5]. These techniques aim to exploit the potential of
SIFs to control the radio environment, take advantage of the
synergy between communication and location signals, and
apply data-driven methods to learn from channel
measurements [5], [8]. . These techniques are expected to
enable high-precision, low-latency localization in B5G
networks [8], [9]. The following sections provide a brief
overview of state-of-the-art ML localization techniques,
factors that influence localization, comparison of localization
techniques versus factors that influence localization,
challenges of ML localization techniques, and
recommendations for making progress in this area. Finally,
an overview of the article is presented in the conclusion.

II. ML LOCALIZATION TECHNIQUES IN B5G
Here are some of the cutting-edge machine learning 

location techniques that are being applied to 5G and beyond 
wireless communication: 

A. Machine Learning for Fingerprinting-based

Localization

Fingerprinting is a technique that uses a database of
reference signals (such as received signal strength, angle of 
arrival, time of arrival, etc.) and their corresponding 
locations to match measured signals and estimate the 
position of mobile nodes. Deep learning can help create and 
update the fingerprint database, reduce the dimensionality of 
fingerprint data, and improve the matching accuracy. Some 
examples of deep learning architectures used for fingerprint-
based localization are convolutional neural networks (CNN), 
deep de-noising neural networks (DDNN), auto-encoders 
(AE), antagonists (GAN), long-short-term memory networks 
(LSTM), deep recurrent neural networks (DRNN) and hybrid 
deep learning models [10].  

B. Machine Reinforcement Learning for RIS-Assisted

Localization

RIS are passive devices capable of reflecting and
manipulating wireless signals to improve communication and 
location performance. Deep reinforcement learning (DRL) 
can help optimize RIS phase shifts, estimate RIS channel 
state information, and design RIS beam patterns for 
localization. DRL is a combination of deep learning and 
reinforcement learning, which can learn from high-
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dimensional data and optimize complex policies in dynamic 
environments [11].  

C. Machine Learning for ICL

ICL is a technique that integrates communication and
location signals into a single waveform, reducing signaling 
overhead and latency. Deep learning can help design the ICL 
waveform, extract location features, and estimate the position 
of mobile nodes. Some examples of deep learning 
architectures used for ICL are CNNs, AEs, GANs, LSTM 
networks, and hybrid deep learning models [12].  

D. Machine Learning for Cooperative Localization

Mobile nodes can communicate position data and
measurements with one another or with anchor nodes (nodes 
whose coordinates are known) using the cooperative 
localization technique to increase the accuracy of their 
location. The most effective cooperative partners may be 
chosen, cooperative data can be merged, and mobile node 
positions can be estimated with the aid of machine learning 
[13].  

E. Machine Learning for Hybrid Localization

In order to take advantage of their complementary
strengths and minimize their flaws, hybrid tracking is a 
methodology that integrates various tracking methods (such 
as range-based, non-range, fingerprint, etc.). Machine 
learning can be used to integrate location data from many 
sources, determine the position of mobile nodes, and choose 
the optimum location approach for various scenarios [12].  

F. Machine Learning for Localization-Aware Resource

Allocation

Location-based resource allocation is a technique that
optimizes the allocation of wireless resources (such as 
power, bandwidth, time slots, etc.) based on location 
information of mobile nodes. Machine learning can help 
learn the optimal resource allocation policy, adapt to 
dynamic network conditions, and balance the trade-off 
between communication and location performance. [11].  

III. ML LOCALIZATION TECHNIQUES IN B5G
Some of the factors considered for localization in 

machine learning localization in 5G and beyond wireless 
communications are: 

A. The Wireless Technology

The wireless technology used for location affects the type
and quality of signals that can be measured and used for 
location. For example, different wireless technologies may 
have different frequency bands, modulation schemes, 
bandwidths, transmit powers, or antenna configurations. 
These factors influence the propagation characteristics, 
coverage range, multipath effects, interference levels, and 
signal-to-noise ratios of wireless signals. Therefore, machine 
learning localization techniques must consider wireless 
technology and its impact on localization performance [11].  

B. The Localization Method

The localization method's complexity and accuracy are
influenced by the localization technique utilized. For 
instance, different localization techniques may make use of 
various measurements (such as received signal strength, 
angle of arrival, time of arrival, etc.), models (such as 
fingerprint, geometric, probabilistic, etc.), or techniques 

(such as range-based, non-range, cooperative, hybrid, etc.). 
The processing needs, communication costs, scalability 
problems, and localization errors of the localization method 
are influenced by these variables. As such, machine learning 
localization algorithms must to take into account the 
localization method and its applicability in various contexts 
[10], [14]. 

C. The Environment

The unpredictability and uncertainty of wireless signals
and position data depend on the environment in which they 
are measured. For instance, various settings could have 
varying degrees of interference, obstructions, reflections, 
diffractions, noise, and shadows that interfere with wireless 
signals. Furthermore, the mobility, dynamics, and 
heterogeneity of various environments may vary, which 
could also have an impact on positional data. Machine 
learning localization techniques must therefore take the 
environment into account as well as its localization issues 
[11]. 

D. The Network Architecture

The scalability and effectiveness of the location system
are impacted by the network architecture. Different network 
architectures could, for instance, use different kinds of nodes 
(such as anchors, sensors, or relays), connections (such as 
wired, wireless, or cellular), or topologies (such as 
centralized, distributed, or hierarchical). These variables 
affect the coordination of the location system and network 
coverage, connection, and capacity. As a result, network 
architecture and its effect on localization performance must 
be considered by machine learning localization approaches 
[11]. 

E. The Application Requirements

The trade-offs and limitations of the localization system
are impacted by application needs for localization. For 
instance, various applications may have various 
specifications for location dependability, accuracy, latency, 
scalability, security, or privacy. These criteria have an impact 
on the location system's design decisions, optimization 
targets, and performance indicators. Therefore, application 
requirements and their implications for localization should be 
taken into account by machine learning localization 
techniques [10], [14]. 

F. The Machine Learning Algorithm

The machine learning algorithm used for localization
affects the learnability and complexity of the localization 
system. For example, different machine learning algorithms 
may have different types of learning (such as supervised, 
unsupervised, reinforcement, etc.), different types of models 
(such as linear, nonlinear, deep, etc.), or different types 
techniques (such as regression, classification, grouping, etc.). 
These factors influence the learning efficiency, accuracy, 
robustness and generalization of the localization system. 
Therefore, ML localization techniques must take into 
account the machine learning algorithm and its suitability for 
localization [11]. 

Table 1 presents comparisons and contrasts of state-of-
the-art ML localization techniques using the following 
factors discussed earlier in this section.  
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TABLE I. COMPARISON OF STATE-OF-THE-ART LOCALIZATION TECHNIQUES 

Technique 
Name 

Wireless 
Technology 

Network 
Architecture 

Application 
Requirement 

Machine 
Learning 
Algorithm 

Localization 
Method Environment 

WiDeep [15] WiFi Distributed 

Indoor 
localization 
with high 

accuracy and 
robustness 

Deep learning 
(CNN) Fingerprinting Dynamic and 

Heterogeneous 

SemanticSLA
M [16] 

WiFi and 
Camera Centralized 

Indoor 
Localization 

with semantic 
information 

Unsupervised 
learning 

(clustering) 
and supervised 

learning 
(classification) 

SLAM 

Unsupervised 
learning 

(clustering) 
and supervised 

learning 
(classification) 

Hybloc [17] 
WiFi and 

Bluetooth Low 
Energy (BLE) 

Distributed 

Indoor 
localization 
with high 

accuracy and 
scalability 

Ensemble 
learning 
(random 

decision forest) 

Hybrid (range-
based and 

fingerprinting) 

Dynamic and 
heterogeneous 

Deep learning 
for RIS-
assisted 

localization [4] 

mmWave or 
THz 

Centralized or 
distributed 

Outdoor 
localization 
with high 

accuracy and 
low latency 

Deep learning 
(CNN, AE, 

GAN, LSTM) 
or deep 

reinforcement 
learning (DRL) 

Range-based 
or 

fingerprinting 

Complex and 
variable 

Deep learning 
for ICL [4], 

[18] 

mmWave or 
THz 

Centralized or 
distributed 

Outdoor 
localization 
with high 

accuracy and 
low latency 

Deep learning 
(CNN, AE, 

GAN, LSTM) 
or hybrid deep 

learning 
models 

ICL (integrated 
communication 

and 
localization) 

Complex and 
variable 

Deep learning 
for 

fingerprinting-
based 

localization 
[18], [19] 

WiFi or BLE 
or UWB or 

RFID or LiFi 
or mmWave or 

THz or 
acoustic 

signals or 
magnetic 
signals or 

inertial signals 
or hybrid 
signals 

Centralized or 
distributed 

Indoor or 
outdoor 

localization 
with high 

accuracy and 
robustness 

Deep learning 
(CNN, DDNN, 

AE, GAN, 
LSTM, 

DRNN) or 
hybrid deep 

learning 
models 

Fingerprinting Dynamic and 
heterogeneous 

In developing Table 1, the following observations were 
made. 

 Most of the techniques use deep learning algorithms
for localization, which can learn from high-
dimensional data and optimize complex policies in
dynamic environments.

 Most of the techniques use fingerprinting methods
for localization, which can exploit the rich
functionality of wireless signals and achieve high
accuracy without requiring geometric models.

 Most techniques use WiFi signals for location, which
are widely available and compatible with most
devices. However, some techniques also use other
signals such as mmWave, THz, BLE, UWB, RFID,
LiFi, acoustic, magnetic, inertial, or hybrid signals to
improve location performance.

 Most techniques are designed for indoor locations,
where wireless signals are more affected by noise,
interference, multipath effects, and environmental
changes. However, some techniques also work for

outdoor locations, where wireless signals have 
greater coverage range and line-of-sight paths. 

 Some of the techniques use hybrid methods for
localization, which combine multiple localization
methods (such as range-based, non-range,
fingerprint, etc.) or multiple machine learning
algorithms (such as supervised, unsupervised,
reinforcement, etc.) to exploit their complementary
strengths and overcome their weaknesses.

 Some of the techniques use new localization
methods, such as RIS-assisted localization and ICL.
The RIS-assisted location uses reconfigurable smart
surfaces to control the radio environment and
improve communication and location performance.
ICL integrates communication and location signals
into a single waveform to reduce signaling overhead
and latency.

Pan African Conference on Science, Computing and Telecommunications (PACT) 2023, Lusaka Zambia

9 September 12 - 13, 2023



IV. CHALLENGES OF ML LOCALIZATION TECHNIQUES 
Some of the open challenges or limitations of the 

machine learning localization techniques are: 

A. Data Quality and Availability 

Machine learning localization techniques rely on large 
amounts of data to train and test their models. However, data 
collected from wireless signals may be noisy, incomplete, or 
outdated due to environmental factors, device heterogeneity, 
mobility patterns, or network dynamics. Additionally, data 
may not be easily accessible or shared for privacy or security 
reasons. Therefore, machine learning localization techniques 
must address data quality and availability issues using 
methods of pre-processing, data augmentation, transfer 
learning, federated learning, or preservation of data. private 
life [20], [21]. 

B. Model Robustness and Security 

Machine learning localization techniques can face 
adversarial attacks that aim to manipulate the data or model 
to degrade localization performance or leak sensitive 
information. For example, an attacker can inject false signals, 
scramble the signals, or modify the fingerprint database to 
trick the tracking system. Additionally, machine learning 
models may not be robust to changes in the environment or 
network conditions that affect wireless signals. Therefore, 
machine learning localization techniques must ensure the 
robustness and security of the model by using anomaly 
detection, encryption, authentication, verification or 
adversarial defense methods [18]. 

C. Computational Complexity and Energy Consumption 

Machine learning localization techniques can involve 
complex algorithms that require high computing power and 
memory resources. However, some of the mobile nodes may 
have limited capabilities and battery life. Additionally, 
machine learning models can incur high communication 
overhead and latency due to the exchange of large amounts 
of data or model parameters. Therefore, machine learning 
localization techniques should reduce computational 
complexity and power consumption by using model 
compression, model pruning, model quantization, model 
distillation, or model compression methods. model 
compression. advanced computing [21]. 

D. Model Generalization and Adaption 

Machine learning localization techniques may not be able 
to generalize well to different environments, devices, or 
scenarios that differ from the training data. For example, a 
machine learning model trained on one building may not 
perform well on another building with a different layout, 
materials, or interference. Additionally, machine learning 
models may not be able to adapt quickly to changes in the 
environment or network conditions that affect wireless 
signals. Therefore, machine learning localization techniques 
should improve the generalization and adaptation of their 
model using transfer learning, online learning, active 
learning or meta-learning methods [18].  

E. Model Interpretability and Explainability 

Machine learning localization techniques can be difficult 
to interpret or explain due to their complex and nonlinear 
nature. For example, a deep neural network may have 
thousands of parameters and hidden layers that are difficult 
to understand or justify. Additionally, machine learning 

models may not provide any measure of confidence or 
uncertainty for their location estimates. Therefore, machine 
learning localization techniques should improve the 
interpretability and explainability of their model using 
visualization, attention mechanism, salience map or Bayesian 
inference methods [20].  

F. Model Evaluation and Validation 

Machine learning localization techniques can be difficult 
to evaluate or validate due to the lack of benchmarks or 
standardized metrics. For example, different studies may use 
different data sets, experimental settings, parameters, or 
performance indicators to evaluate their ML models. 
Additionally, machine learning models may not be validated 
in real-world scenarios or large-scale deployments that 
reflect the practical challenges and requirements of location 
systems. Therefore, machine learning localization techniques 
should establish the evaluation and validation of their model 
using common benchmarks, metrics, protocols or platforms 
[22]. 

V. RECOMMENDATION 
Some possible recommendations to address the 

limitations of machine learning localization techniques are: 

A. Using Hybrid Techniques 

Hybrid techniques are techniques that combine multiple 
location methods (such as range-based, range-free, 
fingerprinting, etc.) or multiple machine learning algorithms 
(such as supervised, unsupervised, reinforcement, etc.) to 
exploit their complementary strengths and mitigate their 
weaknesses. For example, a hybrid technique can use a 
range-based method to provide coarse location and a 
fingerprint method to provide precise location. Or, a hybrid 
technique can use a supervised algorithm to train a model 
offline and an unsupervised algorithm to update the model 
online. Hybrid techniques can improve the accuracy, 
reliability, scalability and adaptability of ML location 
systems [21], [22].  

B. Using Federated Learning 

Federated learning is a technique that allows multiple 
mobile nodes to collaboratively train a machine learning 
model without sharing their data with each other or with a 
central server. Federated learning can address data quality 
and availability issues using each node's local data, model 
robustness, security issues by avoiding data leakage or 
manipulation, and computational complexity issues and 
energy consumption by distributing the computation between 
the nodes [23].  

C. Using Edge Computing 

Edge Computing is a technique that allows mobile nodes 
to perform computations at the edge of the network, such as 
on nearby devices or base stations, rather than on remote 
servers or clouds. Edge computing can reduce 
communication overhead and latency caused by machine 
learning models by avoiding the transmission of large 
amounts of data or model parameters. Edge computing can 
also reduce the power consumption of mobile nodes by 
offloading some of the computational tasks to more powerful 
edge devices [22], [21]. 
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CONCLUSION 
Machine learning location is a promising location 

technique for 5G wireless communications and beyond, as it 
can improve the accuracy and efficiency of location 
algorithms by learning from wireless signals and 
measurements. However, ML localization also faces many 
challenges and limitations, such as data quality and 
availability, model robustness and safety, computational 
complexity and power consumption, generalization and 
adaptation. . models, model interpretability and 
explainability, and model evaluation and validation. In the 
improvement of ML localization techniques, several factors, 
such as wireless technology, network architecture, 
application requirements, machine learning algorithm, 
localization method and environment, and the use of 
appropriate methods are adopted to address the challenges 
and limitations. Some of the leading machine learning 
localization techniques are WiDeep, SemanticSLAM, 
Hybloc, deep learning for RIS-assisted localization, deep 
learning for ICL and deep learning for localization based on 
fingerprints. These techniques use different types of wireless 
signals, network architectures, application requirements, 
machine learning algorithms, location methods and 
environments to achieve high performance location in 
wireless communications. . 5G and beyond. Going forward, 
this study would discuss the integration of ML with other 
emerging technologies, such as massive MIMO, mmWave, 
drones, and blockchain. 
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