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Abstract—Osteosarcoma is a born-forming tumor which is
more common with children and young adults than adults.
Classification of its type is crucial to its proper treatment and
possible survival. Machine learning models, trained on datasets
of the disease, are are effective classification tool than hand-
crafted features which are highly dependent on a pathologist’s
expertise. However, machine learning models are only useful if the
dataset used to train them are representative, of good quality and
well prepared. Thus, data preprocessing and statistical analysis
of datasets used to train models are necessary precursors to
model learning. Data preprocessing is the most demanding task
in the model learning pipeline. Thus, availability of a pre-
processed quality dataset for a given task is desirable for model
learning tasks. Two things are needed to obtain good results
in a machine learning project: good data preprocessing and
good algorithms. This paper provides a thorough preprocessing
and statistical analysis of a 1144-sample dataset of osteosarcoma
patients, to render the dataset ready for model learning. The
efficacy of the preprocessing methods is verified by training
multiclass logistic regression in Python using datasets with 63 of
the 69 variables, with PCA and feature selection to achieve the
respective predictive accuracies of 19.27%, 65.14% and 80.28%.

I. INTRODUCTION

Osteosarcoma is a rare but the most common malignant
tumor in bones with about 4.4 cases per million children
annually [1]. There are many ways to classify the disease, one
of which is primary and secondary. Primary osteosarcoma,
being 75% of the cases [1], usually occurs in children and
young adults as abnormality in bone development, while
secondary osteosarcoma is common with adults with mature
bones as a result of another disease. Primary osteosarcoma
can also occur in different forms, with the common types
being intramedullary osteosarcoma, juxtacortical osteosarcoma
and extraskeletal osteosarcoma [2]. Osteosarcoma can also be
categorized into conventional central osteosarcoma (which also
has the common types osteoblastic, chondroblastic and fibrob-
lastic), telangiectatic, intraosseous and small osteosarcoma [3].

Osteosarcoma can affect any bone, but typically affects the
knee, metaphysis, proximal tibia, distal femur or proximal
humerus, and can spread to other body parts, such as lungs. Its
diagnosis occur via medical imaging (i.e. X-rays, CT scans,
and MRI), test for serum tumor markers, or core-needle biopsy
[4]. Osteosarcoma can be treated by surgery, chemotherapy,
radiation therapy or for benign cases, by observation and in-
formation [1]. Causes of osteosarcoma include genetic disorder

(about 70% of cases) and epigenetic [4], and the survival rate
has increased from 10-15% to 80-90% currently [4].

Exploratory data analysis (EDA) and data preprocessing
[5], [6] are necessary precursors to any data analysis task,
including machine learning. Data preprocessing validates data
by improving its reliability, quality, accuracy and consistency,
enabling machine learning algorithms to read, use and in-
terpret the dataset, all of which in turn increases a model’s
performance and validity. For example, removing outliers
or inconsistent samples and making up missing values (i.e.
data imputation) increase data quality and reliability, which
improve model’s accuracy. Removing duplicate samples in
a dataset makes the latter consistent. As data processing is
necessary and resource demanding, the availability of prepro-
cessed dataset speeds up the overall machine learning pipeline.
For this reason, various data preprocessing methods have been
proposed for model learning. A survey of some of the methods
are found in, e.g., [7].

Some machine learning models, especially those based on
similarity measures, are sensitive to the presence of noise in
the dataset used to learn them [7], making data cleaning a
crucial precursor to model learning. A dataset with too many
variables or correlated variables should not be used for model
learning as some of the variables are redundant and at best do
not provide much benefit to the model [8]. We thus apply
on the dataset dimensionality reduction tools, i.e. principal
component analysis or PCA and feature selection.

Most of the datasets in real-world applications have missing
values [7]. While some machine learning algorithms (e.g. naive
Bayes classifier) are insensitive to missing data values, others
(e.g. k-NN and artificial neural networks) do not do well
amidst missing data values on the dataset used to train them.
Thus, mining missing values in datasets and fixing them is
an important task in data preparation. A variety of methods
is used to handle missing values [9], such as deleting the
variables with missing values, filling them with the variable
mean, mode or median, or constructing a model and using it
to predict the missing values [10], [11].

Application of machine learning in disease classification
is increasing in popularity. For example, Mahore et al. used
random forest algorithm to classify osteosarcoma dataset into
viable, non-viable and non-tumor with accuracy, sensitivity
and specificity of 92.4%, 85.44% and 93.38% and 0.95 area
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under the curve [12]. Non-tumor cell has the proper structure
as it has no cancerous element. A viable tumor still has
the cancerous element in a cell, while non-viable tumor
shows signs of irreversible cell injury [12]. Segmentation and
classification of histology tissue in H&E stained tumor images
is a non-trivial task owing to noise, intra-class variations,
inter-class similarity and crowded context. To circumvent
this problem, [13] applied a five-layer convolutional neural
network (CNNs) which performs automatic feature extraction
to classify osteosarcoma tumor into tumor (viable tumor,
necrosis) and non-tumor.

The rest of the paper is structured as follows. Section II
discusses related works. We then study data understanding
in Sec. III-A, summary statistics in Sec. III-B, data visual-
ization in Sec. III-C, dataset cleaning in Sec. III-D, dataset
normalization in Sec. III-E, and PCA and feature selection
in Sec. III-F. Section IV validates the efficacy of the data
preprocessing by comparing the performance of three logistic
regression models using datasets with all original variables,
PCA-transformed features and feature selection. Conclusions
appear in Sec. V.

II. RELATED WORKS

This section reviews some of the recent studies that are
important to the task of osteosarcoma cancer prediction and
classification using machine learning. In [14], the authors
employ a CNN based on the osteosarcoma Whole Slide Images
(WSIs) dataset [15] to increase the effectiveness and precision
of classifying osteosarcoma tumors into tumor classes (viable
tumor, necrosis) and non-tumor. Owing to training restrictions,
the original 1024 x 1024 images were cropped down to 128
x 128 patches. When CNN is used, the average classification
accuracy for differentiating between tumor classes (VT and
necrosis) and NT regions increases dramatically to 92%. The
aim of the research work [16] was to improve the classification
and prediction of osteosarcoma by utilizing four machine
learning algorithms: namely, DT, SVM, KNN, and AdaBoost.
The result of their study indicates that all techniques have
successfully classified osteosarcoma into viable, necrotic, and
non-tumor. The AdaBoost algorithm outperforms the others
with an overall accuracy of 91.70%.

Anisuzzaman et al. [17] examines how CNNs can reli-
ably predict osteosarcoma malignancy. This study exploits
the power in transfer learning with updated VGG19 and
Inception V3 models on a dataset of 40 whole slide pictures
of osteosarcoma tumors in order to enhance the predictive
accuracy by 2% over prior findings. The total accuracy for the
VGG19 and InceptionV3 models, respectively, was 93.91%
and 78.26% on multiclass classification.

In [18], the challenges of evaluating the treatment response
of osteosarcoma is studied. It proposes a solution that employs
digital image analysis to automate this process, enhancing
accuracy and efficiency. The method combines pixel-based and
object-based techniques to segment tumor and non-tumor re-
gions in high-resolution WSIs of osteosarcoma. The approach
involves tumor property analysis like nuclei clustering, density,

and circularity to distinguish viable and non-viable regions.
Initially, K-Means clustering with color normalization was
used for tumor isolation. A Flood-Fill algorithm groups similar
pixels into cellular objects, providing cluster data for further
analysis. The results demonstrate around 90% accuracy.

Gawade et al. [19] introduced a model designed for the
early-stage detection of bone cancer. Their work emphasized
the urgency of timely cancer identification and management,
highlighting the necessity of automation. They introduced
an automatic approach rooted in Deep Learning, employing
supervised techniques. The conceptual framework incorporates
four algorithms: Visual Geometry Group 16 (VGG16), Visual
Geometry Group 19 (VGG19), Dense Convolutional Network
201 (DenseNet201), and Residual Network 101 (ResNet101).
Notably, the ResNet101exhibited exceptional performance,
achieving an impressive accuracy of 90.36

Reference [20] addresses the methodology for segmenting
the tumor and parosteal sarcoma tissues, which comprises
the gathering of imaging data, format unification, selection
of interested regions, selection of seed points, information
fusion of multimodality MRI. The interesting tissues, which
are dispersed throughout unconnected regions, are segmented
using the vectorial fuzzy-connection approach. Additionally,
they discussed how the algorithm has been improved to take
less time to segment two objects at once. Finally, the study
shows how this technology has been used in osteosarcoma
segmentation and 3D reconstruction medical image analysis
systems, which have been implemented in several hospitals.

Using a dynamic clustering algorithm known as DCHS,
Mandava et al. [21] devised an automatic segmentation method
for osteosarcoma in MRI images. The approach uses Fuzzy
C-means (FCM) and Harmony Search (HS) to effectively seg-
ment the Osteosarcoma MRI images. New to HS, the ”empty
operator” makes it easier to choose empty decision variables
in the harmony memory vector. DCHS incorporates FCM to
improve segmentation results. Haralick texture characteristics
and pixel intensity values have been combined with multi-
spectral data from STIR and T2-weighted MRI sequences for
segmentation. The results indicated excellent results when they
were compared to manually defined data for four patients,
reaching an average Dice measurement of 0.72.

III. DATA PREPROCESSING

The steps used in pre-processing our dataset are elaborated in
this section.

A. Data Understanding

This paper is based on the dataset [15], which labels os-
teosarcoma cancer into the four groups: non-tumor, non-viable
tumor, viable, and viable non-viable. This is a real-valued
multivariate data with 1144 samples and 69 variables (aka
features) shared across all the four classes. The basic features
of the dataset is summarized into Table I with their encoding.
We observe class imbalance issue in the dataset with ’non-
tumor’ being the majority class, which may result in slow
convergence of the weight updating process for the minority
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TABLE I
STATISTICS OF THE ORIGINAL OSTEOSARCOMA DATASET.

Class Number of Data Samples in Class Code
Non-Tumor 536 0

Non-Viable-Tumor 263 1
Viable 292 2

Viable: non-viable 53 3

classes. However, there is only one minority class, which is
the ’viable: non-viable’ class. According to [22], this problem
is not remarkable if there is only a single minority class. The
class imbalance problem is studied in, e.g., [23], [24]

The dataset contains two types of features: statistical (e.g.
variance, mean and correlation) and pathological features (e.g.
nuclei count, texture and number of cells). The variables in a
dataset can be grouped into three: those necessary to predict
class labels and cannot be replaced, unnecessary ones which
have no influence on the class prediction, and the redundant
ones whose role can be assumed by other variables in the
dataset [25]. Variables of a dataset should be correlated with
the target variable but not be correlated among themselves. The
first five samples in the dataset are shown in Table II. Six of
the variables in the dataset, namely Unnamed: 0, image.name,
X.x, X.1, X.y and ImageNumber, are clearly unnecessary
for model building. So, we discard them as part of the data
cleaning process, leaving 63 features.

Figure 1 summarizes the basic statistics of the variables
in the dataset. We observe that 62 of the 63 attributes hold
numeric data (i.e. either float or integer), while the remaining
one is nominal as it holds the class label. Also, each of the
attributes/features ”area” and ”circularity” has one NULL or
missing value.

B. Statistical Summary of the Dataset

The statistics of the original dataset after deleting the six
irrelevant variables is shown in Table III. We observe that
each of the columns ”area” and ”circularity” contain a single
”NULL” or ”missing” value as the count for each is 1143
instead of 1144. A percentile gives the percentage of the data
values smaller than it. For example, 25% of all values in the
columns ”Blue.count” are smaller than 29569.5, while 50%
(i.e. median value) are smaller than 50417.5.

C. Visualization of Dataset

The five-number summary of the dataset in Fig. 2 graphically
shows the locality, spread and any skewness of the two
variables with missing values through their quartiles. We can
observe outliers in both variables. The data samples in the
’circularity’ variable has a larger interquartile range and thus
are more spread about the mean than those of the ’area’
variable. The ’circularity’ variable also shows some right-
skewness, which is validated by the histograms in Fig. 3. The
’area’ variable, however, is geared towards normal distribution,
which is observable from both the boxplots and the histograms.
Both histograms in Fig. 3 have multiple peaks. Thus, the two
variables are multi-modal datasets.

Heatmap is used to study the correlation between the
variables of a dataset. For example, the heatmap in
Fig. 4 reveals a strong positive correlation (i.e. Pear-
son correlation coefficient r≈ 0.96 and p-value=0) be-
tween the variables ’Texture Contrast 3 135’ and ’Tex-
ture DifferenceVariance 3 135’, but near zero correlation (i.e.
r=0.0996 and p-value ≈ 0.0007) between the variables ’Tex-
ture Entropy 3 135’, ’Texture Variance 3 135’. A p-value
less than 0.05 indicates the voidness of the null hypothesis,
confirming a correlation. These dependencies between the
four variables are verified by the scatterplots in Fig. 5. This
means that we can keep only ’Texture Contrast 3 135’ or
’Texture DifferenceVariance 3 135’ to reduce the dimension-
ality of the dataset. This will be confirmed using principal
component analysis (PCA) in Sect. III-F.

D. Dataset Cleaning

As part of the data preprocessing, we must correct erroneous
values (or noise) arising from human error or malfunctioning
data collection instrument. The noise includes duplicates,
missing values, incorrect values (i.e. inliers and outliers) and
mislabelled samples in the data. We found that the dataset
contained no duplicates, NaN values and categorical features.
However, we found in Sections III-A and III-B that the two
variables ’circularity’ and ’area’ had missing values. How
missing values in a dataset are handled depends on the absence
or presence of outliers, as well as their quantity relative to the
size of the dataset.

Outliers are data values that are dissimilar from other values
in a given dataset [26]. Outliers can skew trends and seriously
impair the accuracy of models, and lead misleading predictive
models. The box and whiskers plots in Fig. 2 reveal outliers in
both variables. The outliers in ’area’ and ’circularity’ amount
to 34 (i.e. < 3%) and 21 (i.e. < 2%) outliers, respectively.
Therefore, we would replace the missing values with the
corresponding median values if we kept the outliers for the
modeling. However, as less than 3% of the data samples
are outliers, we deleted them from the dataset, allowing the
replacement of the missing values with their corresponding
mean values. We could have also dropped the samples with
missing values as they are only two. We employed a distance-
based, unsupervised outlier mining method to fish out the
outliers in the dataset. Namely, a data value, say xk, is
considered to be an outlier if

xk < Q1− 1.5× IQR or xk > Q3 + 1.5× IQR (1)

where the interquartile range (IQR) is the difference between
the upper quartile (Q3) and the lower quartile (Q1), as shown
in Fig. 2. Upon deleting the outliers in the dataset, we imputed
the missing values in each variable by the mean of its available
values.

E. Dataset Normalization

We can observe from the summary statistics in Table III of the
dataset under study that the values of the variables have very
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TABLE II
THE FIRST FIVE SAMPLES IN THE ORIGINAL OSTEOSARCOMA DATASET.

Fig. 1. Shapes and types of the osteosarcoma dataset upon deleting the two unnecessary features.

large dynamic ranges. For example, the range of values are
3007 to 322157 for Blue.count, 7398 to 513281 for red.count
and 0.2766 to 38.1151 for Texture SumVariance 3 135. Many
machine learning algorithms, including k−NN, neural net-
works and Support Vector Machines (SVMs), exhibit poor
performance if learned with dataset whose variables have
such large dynamic range, requiring dataset normalization or
scaling. Also, many machine learning functions, including
RBF kernel of SVMs and the L1/L2 regularizers of linear
models, presume that the underlying distribution of the dataset
used to train them has zero mean and unit variance, and even
normally distributed. Further, we observe from the histograms
in Fig. 3 that at least some of the variables of the dataset being
analyzed are approximately normally distributed. For these
reasons, we applied feature-wise z-score normalization on the
dataset, which transforms each variable in the dataset into
zero-mean and unit variance variable. So, each data sample
xk
train in the training set was transformed into

x̃k
train = (xk

train −mtrain)/σtrain (2)

where mtrain and σtrain are the mean and standard deviation
(stddev) of the training samples, respectively. After normal-
ization, the train set has the mean of −8.64× 10−19 and unit
stddev. We then scaled the test and validation sets as

x̃k
test = (xk

test −mtrain)/σtrain (3)

and

x̃k
val = (xk

val −mtrain)/σtrain (4)

F. PCA and Feature Selection

Both principal component analysis (PCA) and feature selection
are different techniques used to reduce the redundant and
unnecessary variables in a dataset.
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TABLE III
SUMMARY STATISTICS OF DATASET.

Fig. 2. Box and whisker plots of the two variables with missing values.

In PCA analysis, we replace the variables in a given dataset
by a new set of variables called principal components (PCs),
which are derived as linear combinations of the original
variables. The main aim in PCA is to reduce the number of
variables which adequately describe the dataset under study.
Figure 6 uses bar chart to represent the variance explained by
individual PCs, and a step plot to represent the cumulative
variance explained by multiple PCs. In PCA, the number of
PCs in a dataset equals its number of variables. However, it
is clear from Fig. 6 that we need less than 10 PCs instead of
the 69 variables in the original dataset to adequately describe
the dataset. This is the reason why PCA delivers data di-
mensionality reduction, which in turn, reduces computational

Fig. 3. Histograms of the two variables with missing values.

resources, such as data storage, memory requirements, model
training time, and predictive time for instance-based learners.
Large data also increases model complexity which reduces a
model’s explainability and interpretability of results. We did
not perform instance selection [27] on the dataset as the latter
has only 1144 examples.

PCA seeks to reduce the dimensionality in a dataset by
exploring any linear dependencies between the variables of a
dataset without considering the target variable, the reason why
it is an unsupervised technique. Feature selection [28], unlike
PCA, does not transform the variables and takes the target
variable into consideration, by ranking the input variables
in regard to how useful each is to predict the target value.
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Fig. 4. Heatmap of the original dataset.

Irrelevant variables in a dataset degrade the performance of
many machine learning algorithms (e.g. kNN) and neural
networks and SVMs become inefficient or even impractical.
Moreover, some algorithms (e.g. Bayesian classifiers) exhibit
poor performance in the presence of redundant variables [6].
By reducing redundant variables we reduce the chance of
model overfitting and high bias. Reducing overfitting, in turn,
improves model generalization. Fewer variables also are easier
to interpret, and reduces model training time.

IV. DATA PREPROCESSING EFFICACY

To validate the power in the data preprocessing techniques
studied in this paper, we built multiclass logistic regression
model using the three types of datasets: with raw 67 variables,
PCA and feature selection with only 16 of the 69 variables.
The model predictive performance in Fig. 7 reveals the dif-
ferences. Model with all variables in the dataset delivers only

19.27%, while datasets with PCA and feature selection delivers
65.14% and 80.28% predictive accuracies, respectively.

V. CONCLUSION AND FUTURE EXTENSION

Data preprocessing (incl. cleaning, transformation, and inte-
gration) is a very crucial and unreplaceable component in data
analysis, and its benefits include:

• it improves accuracy and reliability: well pre-processed
data is void of missing or inconsistent data values result-
ing from human or computer error, resulting in improved
accuracy and quality of a dataset, making it more reliable.

• it makes data consistent: when collecting data, it is pos-
sible to have data duplicates, and discarding them during
preprocessing can ensure the data values for analysis are
consistent, which helps produce more accurate models.

• it increases the data’s algorithm readability: preprocess-
ing enhances the data’s quality and makes it easier for
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Fig. 5. Verifying correlations between variables in the heatmap.

Fig. 6. The variance in the dataset explained by the principal components.

Fig. 7. Confusion matrices of logistic regression with datasets with raw
variables, PCA and feature selection.

machine learning algorithms to read, use, and interpret
it.

• available preprocessed dataset speeds up data analysis and
model building for its adopters.

This paper has analyzed and prepared osteosarcoma dataset
for 4-class model building. We have also demonstrated the
achievable model performance via the appropriate data pre-

processing, and that dataset with feature selection delivers the
best results. We will use the prepared dataset to build powerful
machine learning models which can classify osteosarchoma
types of patients using histopathological dataset.
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