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Abstract— The demand for clean and sustainable energy has 
increased the popularity of photovoltaic (PV) solar panels. PV 
solar panels are the most effective technology for transforming 
the sun's rays into a valuable energy source. To maximize the 
amount of energy captured, the rays of light from the sun must 
be at a 90-degree angle to the surface of the PV panel. To 
accomplish this, PV panels are modified with solar trackers that 
can effectively track the sun's position as it shifts during the day. 
Due to the randomness and nonlinearity of metrological data, 
using deep learning (DL) algorithms to enhance solar trackers 
has gained much popularity among researchers. However, given 
the varying nature of metrological data, single DL models 
sometimes fail to perform satisfactorily. For this purpose, this 
study applies sine and cosine transformations (SCT), a 
convolutional neural network (CNN), and long short-term 
memory (LSTM) to forecast the sun's trajectory. The SCT 
captures the cyclic components of the metrological data. The 
transformed data is then fed into a CNN-LSTM framework, 
where features of the sun’s movement are learned. The SCT-
CNN-LSTM framework’s performance is evaluated concerning 
three other models based on the MAE, MAPE, and RMSE 
performance metrics. Based on the research findings, the CNN-
LSTM framework has a superior performance, achieving an 
MAE, MAPE, and RMSE score of 0.0010, 73.5%, and 0.0012, 
respectively.   

Keywords—Clean Energy, Solar tracker, Deep hybrid 
learning, Photovoltaic panels, Metrological Data. 

I. INTRODUCTION 

In recent years, as the world aims to minimize its 
dependency on fossil fuels and combat climate change, 
integrating sustainable energy sources, such as solar energy, 
into the electrical power infrastructure has become 
increasingly essential. Various researchers have emphasized 
the importance of solar energy because of its abundance and 
environmental friendliness [1]. Further, solar energy is 
regarded as clean energy evenly distributed worldwide [2]. 
Currently, utilizing photovoltaic (PV) panels to convert 
sunlight into a functional form of energy has proven highly 
effective [3]. The optimal amount of sunlight captured by a 
PV panel occurs when the sun's beams are at a 90-degree angle 
to the surface of the PV panel. As a result, the output of the 
PV panel varies with the change in the sun's position. 
Therefore, to increase energy output, PV panels are modified 
with a solar tracker to identify the position of the sun and 
orient the PV panels with the sun's angle [4].   

Generally, single-axis and double-axis solar trackers are 
the most commonly used solar trackers [5]. The rotation of  

single-axis solar tracker is based on one degree of freedom and 
is typically oriented toward the north meridian. There are four 
typical implementations of single-axis solar trackers: vertical, 
horizontal, polar-aligned, and horizontal-tilted single-axis 
solar trackers [5]. Conversely, double-axis solar trackers have 
two degrees of freedom determining a PV panel’s movement 
when tracking the sun. The tip-tilt and azimuth-altitude 
double-axis solar trackers are two popular double-axis solar 
tracker designs. 

Lately, there has been a growing focus on enhancing the 
efficiency of solar trackers through the application of 
conventional machine learning (ML) and DL approaches [6]. 
However, conventional ML models have limited capability in 
handling large datasets and require considerable expertise in 
understanding data representations [7]. Further, solar energy-
based datasets have experienced significant growth, giving 
rise to the big data era. Due to the randomness and 
nonlinearity of metrological data, researchers have focused on 
using DL techniques for solar tracking. Given the varying 
nature of metrological data, single DL models sometimes fail 
to perform satisfactorily [8]. Thus, various works [9] have 
shown that one alternative is to develop a hybrid approach to 
enhance the predictive ability of an algorithm. Many 
researchers utilize the benefits of DL models for non-linear 
feature extraction. In particular, various DL models have been 
used to perform automatic feature extraction on metrological 
data [10], [11]. Similarly, other techniques, such as cyclical 
transformations, have been used to improve predictive 
performance [12], [13]. However, studies combining cyclical 
transformations with feature extraction to improve solar 
tracking accuracy are lacking in the literature. 

In this paper, we implement a deep hybrid learning (DHL) 
algorithm that combines a CNN  and LSTM to forecast the 
sun's location for the next hour. The algorithm comprises three 
components: SCT for recovering cyclical patterns, CNN for 
automatic spatial feature extraction, and LSTM for capturing 
temporal dependencies in data sequences. By combining SCT-
CNN-LSTM, we aim to enhance ST by reconstructing data 
sequences for short-term sun trajectory predictions. Our main 
contribution lies in the integration of SCT-CNN-LSTM to 
improve ST. 

The rest of the paper is organized in the following manner. 
The second section provides an overview of relevant 
literature. The third section outlines the proposed method. The 
fourth section covers the study's findings and accompanying 
discussions. Finally, the fifth section presents the conclusion 
and suggestions for future research.  
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II. LITERATURE REVIEW

This section reviews cutting-edge techniques for 
predicting the sun’s path in PV solar trackers. ST systems are 
essential in maximizing PV panels' energy efficiency. Given 
the recent development of intelligent ST systems, predicting 
the sun’s position has become a research hotspot in renewable 
energy. Astronomical-based models, which use mathematical 
equations and astronomical data, have been applied to PV 
solar trackers. For instance, Sidek et al. [14] proposed a two-
axis PV solar tracker based on a global positioning system 
(GPS) and astronomical equations. The equations were 
applied to calculate the sun's position regarding its orientation 
and elevation angles. The performance of the proposed two-
axis solar tracker was evaluated by comparing its energy 
output to that of a stationary PV panel. The recorded results 
showed that the proposed PV solar tracker captured 27% more 
energy than the stationary PV panel. However, one drawback 
of the proposed equations was their inability to predict the 
sun's position during days of cloud cover.  

Similarly, Fonseca-Campos et al. [15] proposed a 
mathematical model for tracking the sun’s position using GPS 
and astronomical data. The proposed model showed high 
effectiveness in predicting the position of the sun. However, 
since the model was only tested on a small dataset of simulated 
data, its performance may have limited accuracy in a real-
world application. Recently, the performance of ST systems 
has been enhanced using ML models. 

Moreover, ML offers low cost, fast computation, and high 
accuracy [6]. For example, Kim et al. [16] implemented an 
ML-based algorithm for ST. The algorithm was used to
forecast the best tilt orientations for maximizing a PV panel's
energy production. In their study, Kim et al. [16] evaluated the
effectiveness of five distinct ML algorithms, including
random forest (RF), linear regression (LR), support vector
machine (SVM), least minor absolute shrinkage and selection
operator (LASSO), and gradient boosting (GB) algorithms.
The authors found that the GB algorithm outperformed the
other ML algorithms included in the research. Even though
the research included a broad range of ML models, no feature
engineering techniques were used. Similarly, Mondal and
Mondol [17] investigated the efficiency of different ML
models to improve the functionality of a PV ST system. While
the study showed the superior performance of ML-based ST
systems, the study also neglected to include any feature
engineering methods.

Given the large amount of data required to implement 
accurate ST models, researchers have focused on using DL 
models to forecast the sun's position. Pierce et al. [18] recently 
proposed a multi-input CNN that uses sky image data to 
forecast the sun’s path. Although the model could effectively 
extract relevant information for short-term forecasting, it did 
not account for geographical or seasonal effects. Similarly, 
Carballo et al. [19] successfully used a deep CNN (dCNN) 
model for computer vision-based ST. However, the study did 
not investigate how well the proposed dCNN model 
performed on other CNN-based architectures. In another 
study, AL‐Rousan et al. [20] investigated and evaluated the 
most valuable features in predicting the sun’s tilt and elevation 
angles. The optimal features were identified using correlation 
results between the different features and target variables. The 
authors used the identified variables in a DL model, which 
resulted in higher predictive performance. However, their 
model did not account for seasonal variations in the data.  

In response to the shortcomings of single-based DL 
models, DHL models have recently gained significant 
attention among researchers. Deep hybrid models can 
automatically capture and integrate different hidden features 
to improve performance [8]. For instance, Frizzo Stefenon et 
al. [21] presented a combination of wavelet energy coefficient 
(WEC) and LSTM. The WEC was applied to extract signal 
characteristics and reduce noise. The LSTM was then used to 
perform time series-based forecasting. Although the authors 
were able to reduce the forecasting error using this method, 
they did not consider the cyclical effect of angular data on the 
model. In another study, Al-Muswe et al. [2] used an RNN 
with LSTM to forecast the sun's trajectory to maximize the ST 
system’s performance. The authors were able to achieve high 
accuracy. However, the dataset was relatively small, which 
may have hindered the model’s performance.  

Based on the gaps highlighted in the reviewed literature, 
we apply an algorithm that combines cyclical transformations 
with feature extraction to improve the model’s forecasting 
performance. The cyclical transformations used in this study 
convert the original features into their sine and cosine 
components. This allows for a more precise representation of 
the fundamental trends in the data [13]. The feature extraction 
technique is based on a CNN, which is widely used in 
renewable energy forecasting. In terms of metrological data, a 
CNN provides improved accuracy through its ability to 
classify various weather patterns in raw data. Therefore, the 
algorithm used in this study attempts to recover the cyclical 
patterns and extract hidden features in the data to improve 
solar position forecasting. 

III. METHOD

This section presents the method used to develop a hybrid 
hour-ahead ST DL framework. The section begins by 
outlining the dataset used in the study, followed by an 
overview of the basic concepts of the SCT, LSTM, and CNN, 
and finally discussing how they were integrated. Further, the 
experiments conducted were implemented using the Python 
3.9-based Keras framework with Tensorflow. The program 
was run using a Graphical Processing Unit (GPU) on Google 
Collaboratory. 

A. Dataset Description

The proposed model was trained using real-world data
from the Girasol sky imaging and global solar irradiance 
repository [22]. The dataset included features such as solar 
radiation, UNIX time, solar elevation angle, temperature, dew 
point, atmospheric pressure, wind direction, wind velocity, 
and relative humidity. The model aimed to predict the sun's 
elevation angle. The dataset covered 242 days of the solar 
cycle (2017-2019), with sun position data sampled multiple 
times per second and meteorological data sampled at 10-
minute intervals. To match the time resolution, the 
meteorological data was interpolated. Additionally, 
minimum-maximum normalization was applied to scale the 
data. 

B. Sine and Cosine Transformations

Renewable energy-based datasets, particularly those based 
on solar and wind energy, often have non-linear fluctuations 
due to weather patterns [8]. These patterns often have daily, 
seasonal, and yearly variations, making it difficult to predict 
future trends based on past patterns alone. To address this 
challenge, signal processing and engineering fields commonly 
use SCT for time series and circular analysis [23]. Therefore, 
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using SCT plays a significant role in analyzing and modeling 
complex renewable energy-related data. Conceptually, the 
sine and cosine transformation framework is expressed by the 
(1).  

 𝑌𝑚 = 𝜌 + 𝛿𝑐𝑜𝑠(2𝜋𝜑𝑚 + 𝜗) + 𝜀𝑚 (1) 

Where, 𝑌𝑚  is a time series representing the outcome of 
interest at time 𝑚 , 𝑚 = 1, 2, . . . , 𝑁 , and N denoting an 
effective duration represented by the number of samples. The 
fundamental basis of 𝑌𝑚 is reflected by the constant 𝜌, while 
the cyclic component has an amplitude of 𝛿, a frequency of 𝜑, 
and a phase angle of 𝜗. The error terms, represented by 𝜀𝑚, 
follow a normal distribution and are independently and 
identically distributed with an expected value of zero 
( 𝐸[𝜀𝑚] = 0 ) and variance of 𝜎2  ( 𝑉𝑎𝑟[𝜀𝑚] = 𝜎2 ). The 
theoretical framework utilized to analyze cyclic behaviour 
involves a cosine function that increases and decreases 
proportionally throughout a year. Additionally, the timing of 
the peak concerning the origin is described by a phase angle 
or shift parameter, which can be used to determine the angular 
coordinates of two points [24]. In this case, the phase angle is 
expressed in time units in a time series and can be used to 
compare seasonal changes.  

Assuming that a cycle or period of oscillation is known, 
then the frequency of a period in m units is a constant number 
[24]. Therefore, using three parameters which include the 
constant, amplitude, and phase, the conceptual framework can 
be reformulated as follows; 

 
𝑌𝑚 = 𝜌 + 𝛿𝑐𝑜𝑠(2𝜋𝜑𝑚 + 𝜗) + 𝜀𝑚

= 𝜌 + 𝛽𝑐 𝑐𝑜𝑠(2𝜋𝜑𝑚)
+ 𝛽𝑠𝑠𝑖𝑛(2𝜋𝜑𝑚) + 𝜀𝑚 

(2) 

Where, 𝛽𝑐 = −𝛿 𝑐𝑜𝑠 𝜗  and 𝛽𝑠 = 𝛿 𝑠𝑖𝑛 𝜗  represent the 
model parameters. The temporal resolution of the data is 
described by 𝜑 = 1/𝑇 , where T represents the unit of 
analysis. For instance, if the unit of analysis is monthly, 
weekly, or daily data, then T is 12, 52.25, and 365.25, 
respectively. Therefore, based on (2), slight shifts in peaking 
timing can be recovered using individual sine and cosine 
components as shown by (3) and (4); 

 𝑠𝑖𝑛(2𝜋𝜑𝑚𝑖) = 𝑠𝑖𝑛(2𝜋𝑚𝑖/𝑇) (3) 
 𝑐𝑜𝑠(2𝜋𝜑𝑚𝑖) = 𝑐𝑜𝑠(2𝜋𝑚𝑖/𝑇) (4) 

This study used the SCT to extract daily and monthly 
periodicity from the UNIX time (seconds) feature. Similarly, 
elevation angle and wind direction features were transformed 
into a 2-dimensional feature space by replacing each cyclic 
feature X with two features, cosine (X) and sine (X). 

C. CNN Module 

CNNs have gained significant attention in various fields, 
including fault diagnosis, computer vision, and speech 
recognition [25]. These models differ from conventional DL 
models by utilizing convolutional layers, reducing network 
parameters through weight sharing and local connectivity. 
Recent studies have demonstrated the effectiveness of CNNs 
in univariate time series forecasting [25].  In this approach, the 
CNN model leverages past observations to predict the next 
value. The CNN architecture consists of convolution, pooling, 
and fully connected layers. Therefore, this study employed a 
simple CNN module with a kernel size of 3 and 32 filters. 

D. LSTM Module 

LSTM, a type of RNN, is utilized for analyzing sequential 
data like time series due to its ability to mitigate the vanishing 
o exploding gradient problems faced by traditional RNNs 
[26]. With its internal memory unit and gate mechanism, 
LSTM can retain information across multiple time intervals. 
The LSTM unit comprises a cell with input, output, and forget 
gates, regulating the flow of information within the cell state. 
In this study, LSTM was employed to predict the sun's 
elevation angle one hour ahead using meteorological features. 
The model featured one LSTM layer and one dense layer, with 
32 and 2 units respectively, predicting the sine and cosine 
values of the angle. 

E. SCT-CNN-LSTM Framework 

This section presents the workflow of the SCT-CNN-
LSTM framework for optimized ST. The framework starts 
with data preprocessing, involving time-series resolution 
adjustment and data exception handling. The SCT technique 
is applied to selected features, transforming cyclic features 
into cosine and sine representations, creating a 2-D feature 
space. The transformed dataset is then fed into a convolution 
layer to extract internal patterns and uncover hidden 
dependencies in the meteorological data. The output of the 
convolutional layer is passed through an LSTM layer, 
capturing short and long-term temporal relationships. Finally, 
the LSTM layer's output is processed by a dense layer, 
generating the final forecasts. Fig. 1 depicts the framework's 
processing flow. 

 
Fig. 1.  SCT-CNN-LSTM Framework 

F. Performance Metrics 

When assessing the variance between a model's 
predictions and the observed values, common metrics 
employed include mean absolute error (MAE), mean absolute 
percentage error (MAPE), and root mean square error 
(RMSE). In this study, MAE is utilized to measure the average 
absolute difference between the predicted and actual vectors, 
as indicated by (5). The actual observations are denoted as 𝑚𝑖, 
the predicted observations as �̂�𝑖, and 𝑝 represents the sample 
size. A lower MAE value indicates a more desirable 
performance for the model. 

 

𝑀𝐴𝐸 =
1

𝑝
∑|𝑚𝑖 − �̂�𝑖|

𝑝

𝑖=1

 (5) 

MAPE quantifies the percentage difference between the 
actual and predicted observations, as described in (6). A low 
MAPE value is desired for a model's performance. 
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1

𝑝
∑

𝑚𝑖 − �̂�𝑖

𝑚𝑖

𝑝

𝑖=1

 (6) 

RMSE computes the square root of the average squared 
difference between the predicted and actual values, as shown 
in (7). A smaller RMSE value indicates a higher performance 
of the model. 

 𝑅𝑀𝑆𝐸 =  √
1

𝑝
∑(𝑚𝑖 − �̂�𝑖)2

𝑝

𝑖=1

 (7) 

IV. RESULTS AND DISCUSSION 
The methods used in this research were discussed in the 

preceding section. Specifically, we outlined the SCTs, CNN, 
and LSTM. In addition, we discussed how these methods were 
combined to form the SCT-CNN-LSTM model, which was 
used to make hour-ahead predictions of the sun's position. To 
demonstrate the SCT-CNN-LSTM model’s superiority, we 
implemented and evaluated its performance on other DL 
models, including the CNN, LSTM, and GRU models. The 
CNN-LSTM framework and other DL models are evaluated 
using three performance metrics, namely MAE, MAPE, and 
RMSE. For each DL model, 30 runs of model testing were 
made, and their performance results were recorded as shown 
in Table I. Further, significance testing was performed to 
ensure that the differences observed in the models’ 
performance were statistically significant. 

TABLE I.  MODEL PERFORMANCE RESULTS. 

 

A. Evaluation of Model Performance and Stability of the 

Models. 

To illustrate the performance of the models, the average 
performance results of the different DL models are presented 
in Table II. 

TABLE II.  AVERAGE PERFORMANCE OF THE DL MODELS. 

Model 
Performance Metric 

MAE MAPE RMSE 
LSTM 0.0016 123.9067 0.0018 
CNN 0.0018 124.5435 0.0023 
SCT-CNN-LSTM 0.0010 73.4988 0.0012 
GRU 0.0024 123.5171 0.0028 

According to Table II, the SCT-CNN-LSTM model 
achieved the best average MAE, MAPE, and RMSE results of 
0.0010, 73.4988, and 0.0012 respectively. Additionally, the 
spread and medians of the MAE, MAPE, and RMSE results 
obtained are presented in Figs. 2, 3, and 4, respectively. The 
spread of the performance results is presented in terms of the 
quartile values, whereas the whiskers show variations outside 
the first and third quartile values. Furthermore, the points 
located beyond the whiskers represent extreme values. 

 
Fig. 2. Box Plot of Model Performance Results Based on MAE 

 
Fig. 3. Box Plot of Model Performance Results Based on MAPE 

 
Fig. 4. Box Plot of Model Performance Results Based on RMSE 

Run# 

MAE MAPE RMSE 
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1 0.0012 0.0009 0.0010 0.0017 134.7143 68.3040 48.8671 48.9125 0.0013 0.0010 0.0012 0.0018 

2 0.0009 0.0010 0.0006 0.0036 231.7931 130.9524 132.8113 92.5745 0.0011 0.0026 0.0008 0.0039 

3 0.0022 0.0014 0.0005 0.0031 198.5610 145.3635 83.4768 357.0733 0.0024 0.0018 0.0007 0.0040 

4 0.0015 0.0007 0.0014 0.0034 60.1762 174.9091 36.2577 100.4340 0.0019 0.0011 0.0019 0.0039 

5 0.0016 0.0006 0.0005 0.0016 144.7114 167.3322 104.5754 99.2664 0.0016 0.0008 0.0008 0.0019 

6 0.0027 0.0024 0.0007 0.0010 57.1839 61.5591 85.2691 104.3806 0.0029 0.0027 0.0009 0.0013 

7 0.0009 0.0020 0.0002 0.0043 146.6215 138.0900 63.5375 104.4056 0.0012 0.0022 0.0004 0.0046 

8 0.0014 0.0026 0.0014 0.0013 47.1661 129.9514 47.4434 130.8226 0.0018 0.0034 0.0016 0.0014 

9 0.0008 0.0007 0.0012 0.0015 123.9280 114.3099 86.7378 118.8935 0.0010 0.0010 0.0013 0.0017 

10 0.0005 0.0010 0.0008 0.0013 54.1388 48.2754 72.0885 106.8177 0.0006 0.0016 0.0010 0.0017 

11 0.0013 0.0043 0.0014 0.0020 94.5439 167.2682 98.4000 48.5874 0.0016 0.0044 0.0015 0.0024 

12 0.0012 0.0026 0.0008 0.0019 91.8256 238.6070 50.4738 66.6388 0.0013 0.0033 0.0009 0.0022 

13 0.0015 0.0047 0.0005 0.0019 121.8543 46.1097 71.6161 125.1795 0.0017 0.0051 0.0006 0.0025 

14 0.0018 0.0013 0.0011 0.0016 55.0167 104.1268 77.9744 58.5866 0.0019 0.0015 0.0013 0.0019 

15 0.0016 0.0040 0.0009 0.0044 138.4683 50.0205 72.7148 177.9281 0.0017 0.0049 0.0010 0.0046 

16 0.0014 0.0011 0.0005 0.0005 113.0741 161.4797 77.7758 83.8191 0.0015 0.0012 0.0006 0.0007 

17 0.0035 0.0027 0.0009 0.0014 217.1975 142.1745 95.1167 67.0519 0.0037 0.0030 0.0011 0.0016 

18 0.0005 0.0011 0.0008 0.0057 260.7091 97.2478 97.6016 222.0819 0.0007 0.0015 0.0012 0.0059 

19 0.0012 0.0020 0.0007 0.0015 99.1513 200.2443 64.2678 164.5121 0.0013 0.0026 0.0009 0.0018 

20 0.0022 0.0017 0.0006 0.0036 94.5505 84.9969 34.9129 162.3456 0.0026 0.0022 0.0008 0.0040 

21 0.0020 0.0023 0.0019 0.0020 260.7091 97.2478 97.6016 222.0819 0.0023 0.0024 0.0021 0.0022 

22 0.0008 0.0012 0.0008 0.0009 43.5129 76.2825 78.2938 159.4505 0.0009 0.0017 0.0010 0.0011 

23 0.0011 0.0014 0.0007 0.0012 44.1397 165.5625 62.4806 76.4664 0.0013 0.0016 0.0009 0.0014 

24 0.0012 0.0019 0.0020 0.0018 106.2906 66.7375 52.1098 76.3902 0.0015 0.0021 0.0026 0.0020 

25 0.0015 0.0022 0.0015 0.0021 99.2502 71.1337 47.7943 82.5341 0.0016 0.0025 0.0018 0.0023 

26 0.0011 0.0017 0.0012 0.0043 142.1075 183.9240 96.7991 257.4666 0.0013 0.0035 0.0013 0.0054 

27 0.0017 0.0015 0.0013 0.0044 104.8902 134.4932 69.6654 68.8093 0.0018 0.0027 0.0014 0.0056 

28 0.0012 0.0010 0.0011 0.0032 54.4842 50.3920 57.2569 127.6479 0.0015 0.0011 0.0013 0.0038 

29 0.0038 0.0010 0.0014 0.0025 273.3652 112.5635 62.5290 115.9429 0.0044 0.0014 0.0016 0.0028 

30 0.0026 0.0017 0.0004 0.0024 103.0647 306.6463 78.5153 78.4121 0.0028 0.0020 0.0006 0.0029 
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According to Figs. 2, 3, and 4. The SCT-CNN-LSTM 
recorded the lowest median score and smallest spread. These 
results observed further justify the remarkable performance of 
the SCT-CNN-LSTM framework in terms of minimizing 
errors and maintaining stability.  

B. Significance Testing. 

Significance testing was used to determine the statistical 
significance of the differences in performance of the SCT-
CNN-LSTM against the single DL models used in this study. 
The models’ performance results were tested for significance 
based on their MAE, MAPE, and RMSE scores. To begin, the 
MAE, MAPE, and RMSE performance results of each model 
were checked in accordance with the normal distribution. In 
this study, since we had a small sample size which was based 
on the performance results recorded from the 30 runs of model 
testing, the Shapiro-Wilk test was used to test for normality 
[27]. Based on the 0.05 level of significance, if the p-value is 
> 0.05, the data distribution is not significantly different from 
a normal distribution, whereas, if the p-value is < 0.05 there is 
a significant deviation from the normal distribution. The 
Shapiro-Wilk normality test results for the DL models based 
on their performance results are presented in Table III. 

TABLE III.  SHAPIRO-WILK NORMALITY TEST RESULTS FOR DL 
MODELS. 

Model 
MAE MAPE RMSE 

W p-value W p-value W p-value 
CNN 0.8639 0.0012 0.9300 0.0493 0.9187 0.0248 
LSTM 0.8857 0.0038 0.8851 0.0037 0.8817 0.0031 
SCT-CNN-LSTM 0.9548 0.2267 0.9726 0.6114 0.9402 0.0924 
GRU 0.9142 0.0190 0.8401 0.0004 0.9091 0.0141 

According to Table III, the Shapiro-Wilk test showed that 
all but the performance results of the SCT-CNN-LSTM 
departed significantly from normality with p-values < 0.05 
and very high statistic (W) values. Thus, due to the sample 
deviation from the normal distribution, the Kruskal-Wallis (H) 
non-parametric test was used on the samples of model 
performance to verify that the results from the different DL 
models differ significantly [28]. The null hypothesis of the 
Kruskal-Wallis (H) test is that the data samples do not differ. 
If the p-value is less than the chosen significance level ( = 
0.05), we reject the null hypothesis and conclude that there is 
a significant difference between the group’s medians. Table 
IV presents the Kruskal-Wallis results for the model 
performance comparisons.  

TABLE IV.  KRUSKAL-WALLIS TEST RESULTS BASED ON MODEL 
PERFORMANCE COMPARISON. 

Performance Metric H p-value 
MAE 33.3544 2.71E-07 

MAPE 17.9090 4.59E-04 
RMSE 37.1715 4.23E-08 

 Based on Table IV, all the p-values recorded are 
considerably less than 0.05, indicating strong evidence against 
the null hypothesis of equal medians in performance scores 
among the DL models. Therefore, we reject the null 
hypothesis, suggesting at least one DL method has a 
significantly different median performance score compared to 
the others. To further investigate the pairwise differences 
between the DL models post-hoc testing was done using 
Bonferroni-Dunn’s test. A two-tailed null hypothesis at the 

0.05 level of significance was employed. The results of the 
significance testing for the CNN-LSTM framework against 
the other models using testing their MAE, MAPE, and RMSE 
scores are presented in Tables V, VI, and VII. 

TABLE V.  RESULTS OF POST-HOC TESTS OF HYBRID AND SINGLE 
MODELS' MAE PERFORMANCE. 

Comparison p-value *H0 

SCT-CNN-LSTM vs CNN 1.12E-04 Reject 
SCT-CNN-LSTM vs LSTM 1.85E-03 Reject 
SCT-CNN-LSTM vs GRU 1.61E-08 Reject 

TABLE VI.  RESULTS OF POST-HOC TESTS OF HYBRID AND SINGLE 
MODELS' MAPE PERFORMANCE. 

Comparison p-value *H0 
SCT-CNN-LSTM vs CNN 2.84E-04 Reject 

SCT-CNN-LSTM vs LSTM 9.82E-04 Reject 
SCT-CNN-LSTM vs GRU 6.57E-04 Reject 

TABLE VII.  RESULTS OF POST-HOC TESTS OF HYBRID AND SINGLE 
MODELS' RMSE PERFORMANCE. 

Comparison p-value *H0 
SCT-CNN-LSTM vs CNN 4.00E-06 Reject 

SCT-CNN-LSTM vs LSTM 3.41E-03 Reject 
SCT-CNN-LSTM vs GRU 1.16E-08 Reject 

According to the results in Tables V, VI, and VII, the 
group-wise p-value observed in the comparison of the hybrid 
model and the single-based DL models are less than 0.05. 
Thus, it can be concluded that the results attained by the 
models differ significantly from one another.  

V. CONCLUSION 
This study has shown that deep hybrid techniques can 

significantly improve ST. The method applied in this study 
combined cyclical transformations with feature extraction to 
improve solar tracking accuracy. This was performed using 
SCT and a CNN model for automatic feature extraction. 
Further, the LSTM model was used to forecast the subsequent 
time interval by considering the past data on the sun’s 
position. The deep hybrid model was evaluated against three 
models based on the MAE, MAPE, and RMSE performance 
metrics. In the experiment, the SCT-CNN-LSTM model 
attained the most favorable average performance compared to 
the other models. Further, the SCT-CNN-LSTM model was 
the most stable, proving that it can be applied to enhance solar 
tracking technologies in diverse weather conditions. 
Additionally, significance testing was conducted. The test 
proved that the performance scored by the SCT-CNN-LSTM 
was statistically different from the other base models. This 
provided further justification that the hybrid-based model 
provides superior results in predicting the sun’s position. 
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