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Abstract 

Clean water and sanitation are the sixth goal under the UN 
Sustainable Development Goals. However, reports have 
shown that over 129 countries are not on track to reach this 
goal by 2030. Besides the lack of basin management, 
countries are behind on monitoring of the water bodies. 
Water pollution affects the livelihood of people living in 
the catchment area of the river especially the people living 
in the rural areas and the animals that are dependent on that 
water. People who live in rural areas do not have the 
privilege of a piped water network that has treated water. 
Currently, in Zambia, water is monitored once every 
quarter and so, this leaves the water unmonitored for most 
of the time. This research proposed the development of a 
model based on IoT, Cloud Computing and AI for data 
collection and monitoring, and developed a prototype 
based on this model which uses machine learning to predict 
the quality of water. A water monitoring device was built 
using sensors, an Arduino and a Raspberry pi. The sensors 
used measured pH, temperature, electrical conductivity, 
total dissolved solids and turbidity. An Artificial Neural 
Network with one hidden layer was used to predict the 
Water Quality Index. This index was based off the National 
Sanitation Foundation Water Quality Index (NSF-WQI). 
The results of the model showed that it had an R2 score of 
0.953, MAE and MSE of 0.835 and 1.280 respectively. 
These results support the use of an ANN in the predicting 
WQI 
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I. Introduction

Water pollution is a problem that has affected the world on 
a large scale. Access to safe water is a basic human need 
for health and wellbeing. Billions of people will lack access 
to these basic services by 2030 [1]. One of the limitations 
to achieving this UN SDG is lack of considerable effort 
towards regularly measuring water quality parameters [2]. 
For at least 3 billion people, the water quality they rely 
upon is unknown owing to lack of monitoring [1].  
The Kafue River catchment spans an area of 
156034.386km2 covering 20% of Zambia [3]. This shows 
that a great number of households is dependent on the river. 
Water pollution monitoring is crucial due to its 
environmental and health implications. This study 
addresses these limitations by using cloud computing and 

machine learning to enhance water quality monitoring. The 
goal was to create an integrated system that enables real-
time monitoring and advanced analytics for comprehensive 
water quality assessment. By leveraging cloud 
infrastructure and machine learning algorithms, this 
approach aims to overcome the constraints of conventional 
methods and improve the detection and response to 
contamination incidents. A prototype device was proposed 
that records readings for pH, temperature, total dissolved 
solids, electrical conductivity and turbidity. This used an 
Arduino to connect to the sensors and Raspberry pi that was 
used to locally store the readings and upload them to an 
online database. An Artificial Neural Network was then 
used to predict a value for the WQI. 

II. Literature Review

The section looks at work that has been done concerning 
water quality monitoring and the use of machine learning 
to determine the quality of the water. The first part of the 
review looks at the studies that monitored water quality 
including what parameters were being read and the 
microcontrollers used as well as how the readings were 
stored and displayed. The latter part looks at the different 
machine learning algorithms employed to determine the 
quality of water. 
Previous work on monitoring water quality using IoT have 
been done. Detection of contamination for both soil and 
water was carried out in a study [4], they used edge 
computing to communicate between IoT gateway and 
sensor system to send health alerts. The parameters that 
were being looked at were temperature, pH, turbidity, 
chemical oxygen demand, total hardness, total dissolved 
solids, magnesium and chloride. Vijaykumar [5] proposed 
to design a low-cost monitoring system that used a 
Raspberry Pi as a core controller. Sensors for water quality 
parameters were connected to the core controller. These 
parameters were pH, turbidity, electrical conductivity and 
dissolved oxygen. An IoT module was used to connect the 
Raspberry pi to the internet and send data. Nikhil [6] 
connected sensors to a NodeMCU microcontroller which 
used Wi-Fi to send the data to Azure Event Hub. They used 
Power Bi to display the sensor values in the form of a web 
page. A machine learning model was hosted online which 
predicted the temperature of the water at a given time of the 
year. Kamaludin [7] proposed a wireless sensor network 
that used radio Frequency at 920MHz instead of a Zigbee 
connection. This was implemented because of its ability to 
surpass attenuation in vegetation areas. The water quality 
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parameters that were being monitored were pH, dissolved 
oxygen, chemical oxygen demand, biochemical oxygen 
demand, total suspended solids and ammoniacal nitrogen. 
Five classification algorithms were compared for 
performance using different attributes [8]. 
The Naïve Bayes model achieved the highest accuracy 
(85.19%) when using all the parameters, while the Kstar 
model performed best (86.67%) when only six attributes 
were selected. Feature selection algorithms identified three 
attributes and the Bagging model achieved the highest 
accuracy (67.41%). This research showed that the 
attributes selected affect the performance of the 
classification model. Advanced AI algorithms were 
developed to predict WQI [9]. The model showed accurate 
WQI predictions, with the NARNET model performing 
slightly better than the LTSM, and the SVM achieved the 
highest accuracy of (97.01%) for water classification. A 
neural network model to predict surface water WQI based 
on physiochemical parameters was proposed by [10]. The 
model achieved high accuracy with a correlation 
coefficient of 0.9792, low MSE and RMSE of 0.625 
indicating that the effectiveness of neural networks for 
WQI prediction. Water quality indices such as CCME and 
NSF are valuable tools for assessing and communicating 
surface water quality [11]. In this study, these WQIs were 
applied to water quality data from Polyphytos reservoir-
Aliakmon River in Greece. The performance and suitability 
of the indices were compared, with the NSF-WQI found to 
be more robust and closer to the classification of the WFD-
ECOFRAME approach as compared to CCME. 
These studies employed different sensor systems, 
connectivity, methods and data analysis techniques. The 
results demonstrated the effectiveness of these approaches 
in accurately assessing and predicting water quality. 
Furthermore, the comparison of water quality indices 
highlighted the suitability of the NSF-WQI for robust 
classification in line with regulatory frameworks.  

III. Methodology

To achieve the objective of this research, a prototype 
device was built. The device was used to collect the 
readings of the water quality parameters and storing them 
locally and importing it to an online database. The data in 
the database was then used to display real-time readings of 
the water quality parameters on a web application. 
The monitoring device was built using an Arduino mega 
2560. Four sensors that were used to monitor the water 
quality were connected to the Arduino. The four sensors 

were measuring pH, Temperature, Total Dissolved Solids 
(TDS) and Turbidity. To measure Electrical Conductivity 
(EC), the readings from the TDS were used to calculate EC 
by using the correlation between the two parameters. TDS 
and EC have a linear relationship when in fresh water [12]. 
This relationship is represented by the gradient k of the 
graph of TDS against EC. The equation of the line that fits 
the graph is given by equation (1). 

The values of TDS and EC in the dataset obtained from 
Toronto and Region and Conservation Authority (TRCA) 
were used to plot a graph of TDS against EC shown in 
Figure 1. The gradient of this graph represented the 
correlation between the two parameters. This is what was 
used to determine the EC from the TDS sensor used in the 
water monitoring device. The readings from the TDS 
sensor were used to determine the EC hence it is 
represented in Figure 2 as one of the parameters read with 
the sensors. 

𝑇𝐷𝑆 = 𝑘 × 𝐸𝑐     (1) 

Except for the temperature sensor, all of the sensors used 
were analogue. The analogue signals were converted to 
digital readings using the equations provided in each 
sensor's user handbook. The readings were then delivered 
to the Arduino's port as a single line separated by commas. 
On the Raspberry Pi, a Python program was built and 
executed that used the Serial library to read data from the 
USB port to which the Arduino was connected. The 
Asynchronous Reception and Transmission (UART) 
Protocol was utilised by both boards. The Python code 
divided the data from the Arduino using the commas in the 
data and stored it in a Python dictionary with the key being 
the name of the parameter corresponding to its value. The 
other key-value pairs were the current date and time, as 
well as an index set to an arbitrary integer. This Python 
dictionary was converted to JSON and stored in a 
MongoDB collection. There were two MongoDB 
collections created. The first was used to store all data 
acquired while the device was running, and the second was 
used to save data displayed on the web app. The reading in 
the web app collection was removed and replaced with the 
most recent reading. The index is what was used to delete 
and replace the old entry. A CSV file was also created to 
store the data locally in case of no internet connection. 
The dataset which was used to train the model was from the 
Toronto Region and Conservation Authority (TRCA) open 

Figure 2: Design of the water monitoring system 

Figure 1: Graph showing the relationship 
between TDS and EC 
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datasets under the Toronto and Region Conservation 
Authority Open data V1.0 license. This data was collected 
over 41 monitoring stations in TRCA jurisdiction. The data 
was collected once every third week of the month for five 
years. The dataset had 69 monitored parameters. From 
these, only eight were used to train the model. These were 
pH, Temperature, Total Dissolved Solids, Nitrate, 
Phosphate, Turbidity, Dissolved Oxygen (% Saturation) 
and Biochemical Oxygen Demand. The NSF-WQI requires 
nine parameters, to determine the WQI, however, from the 
dataset available, Faecal Coliform which is one the 
parameters used was not present. A study by Hefni [13] 
addresses this particular matter. They too used eight 
parameters to determine the NSF-WQI. The missing 
parameter was also Faecal Coliform. The weights of the 
parameters were adjusted to accommodate this change. 
To have real-time monitoring of the water parameters, a 
web application was used to display the results. 

Table 1:Monitored water parameter description 
Parameter Description 

pH Measures how acidic or basic 
the water is. 

Temperature 
Palatability, viscosity, odour 
and chemical reactions are 
influenced by temperature 

Total 
Dissolved 
Solids 

How much of particles have 
dissolved in the water 

Electrical 
Conductivity 

The electrical conductivity of 
water is the ability of water to 
carry an electrical or conduct 
electricity 

Turbidity 

How clear the water is. It 
indicates the presence of 
pathogens, bacteria and other 
contaminants such as lead and 
mercury 

The water parameters were stored in a MongoDB database. 
Flask, a Python framework for backend development was 
used to communicate with the server. To get the data from 
the MongoDB database, a Python driver for MongoDB 
called PyMongo was used. The display was updated with 
the latest results by using a JavaScript code which checked 
every second if the value in the field was the same as the 
one from the database or it had changed. 
If it was the same, nothing happened but if it was different, 
the field would be updated with the new value. 

𝑁𝑆𝐹𝑊𝑄𝐼 =.𝑊! × 𝑄!

"

!#$

	 	(2) 

Where: Wi is the weight score 
Qi is the sub-index 

Although the original dataset had 69 parameters, only eight 
of them could be used to train the model based on the 
modified NSF-WQI, so any unnecessary parameters were 
dropped from the dataset. Certain metrics, such as pH and 
TDS, had data gathered both in the lab and in the field, and 
this data was utilised to fill any gaps in either column. After 
that, the field columns were removed from the dataset. 

Table 2: Filling in the missing values 
Parameter Missing Values 

Before After 
pH (lab) 110 36 
Ph (field) 139 36 
Solids, Dissolved (TDS) 143 67 
Solids, Dissolved (TDS, Field) 793 67 

A matrix plot was created using a Python library known as 
missingno to visualise the missing values in the dataset. 
The plot showed that a considerable number of readings 
was missing and any pre-processing steps of using mean or 
mode to fill them would have created an inaccurate dataset 
so these rows were dropped from the dataset. 

Anomalies and outliers were also searched for in the 
dataset using boxplots. The TDS column showed to have 
very high values far from the mean but these were not 
outliers, Oxygen Dissolved (% Saturation) and Turbidity 
had some negative values, these were few so they were also 
dropped from the dataset. 

Figure 3: Image showing the components of the 
monitoring device 

Figure 4: Matrix plot showing missing values 

Figure 5: Boxplot for each parameter 
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To label the dataset, the NSF-WQI method was used. This 
meant that the sub-index (Qi) for each reading had to be 
read from the Q-charts. In order to determine the equations 
of the Q-charts, the plots were replicated by entering values 
that ranged the entire scale for each parameter. For 
example, to plot the Q-Chart for Biochemical Oxygen 
Demand (BOD), values ranging 0 to 30 with a step size of 
1 were entered into the online NSF-WQI calculator found 
on https://www.knowyourh2o.com, the outputs were then 
plotted using Google Sheets. The trendline feature was then 
used to fit a line to the graph plotted, the equation of that 
line represented the equation of the Q-Chart for that 
particular parameter. This process was repeated on the 
other parameters each with its own scale and step size. Only 
five equations could be found through this process, so for 
the rest of the parameters, the subindex had to be calculated 
without the use of the Q-Chart equations. The Weights used 
in the NSF-WQI are predetermined, but were modified 
since eight parameters were used instead of nine. 

Table 3: Modified NSF-WQI Weight Scores 
Parameter Original Weight Modified Weight 
DO 0.17 0.20 
pH 0.11 0.13 
BOD 0.11 0.13 
Temperature 0.10 0.12 
Phosphate 0.10 0.12 
Nitrate 0.10 0.12 
Turbidity 0.08 0.10 
TDS 0.07 0.08 
Faecal 
Coliform 

0.16 

An Artificial Neural Network (ANN) was the preferred ML 
model used to predict the WQI. Neural networks are more 
capable of modelling data that have more intricate patterns. 

Table 4:Range and step size for each parameter used to 
plot the Q-Charts 

Parameter Range Step size 
DO 0 – 140 5 
Phosphate 0 – 10 0.5 
Nitrate 0 – 100 5 
Turbidity 0 – 100 5 
BOD 0 – 30 1 

The artificial neural network (ANN) that was constructed 
for this study consisted of a single hidden layer. Leveraging 
the capabilities of the Keras library within the TensorFlow 
framework, the model's architecture was developed. 
Within the hidden layer, the chosen activation function was 
the widely used "Rectified Linear Unit" (ReLU), a choice 
motivated by its effectiveness in handling various data 
complexities. Correspondingly, given the nature of the 
model as a regression-based one, the activation function 
implemented in the output layer was specified as "Linear," 
aligning with the objective of predicting continuous values. 
To gauge the effectiveness of the model and guide its 
refinement, a two-pronged strategy was employed for 
defining the loss function and optimizer. The "mean 
squared error" was selected as the loss function, enabling 

the model to quantify the disparity between predicted and 
actual values. Complementing this, the "adam" optimizer 
was harnessed, enhancing the network's ability to converge 
towards optimal weights and biases efficiently. 
Delving into the pivotal task of configuring the hidden 
layer, determining the appropriate number of nodes was a 
paramount concern. Addressing this challenge, the 
Keras_tuner, a specialized hyperparameter tuning tool 
integrated within the Keras ecosystem, was harnessed. The 
range of nodes was systematically set, spanning from eight 
(n) to twenty-one (2n+5), where n symbolizes the number
of input nodes, as specified [14]. This approach allowed for
an exploration of varying complexities in the hidden layer's
representation.
Furthermore, in a bid to optimize the learning process of
the model, the learning rate, a vital hyperparameter for the
optimizer, was methodically tuned. The learning rate was
trialled across discrete values, specifically 0.1, 0.01, and
0.001, unveiling the impact of different learning rates on
convergence and performance.
Partitioning the dataset effectively is a prerequisite for
model training and validation. In this study, the dataset was
judiciously split into distinct segments: 70% for training,
15% for validation, and an additional 15% for testing. This
segregation enabled rigorous training, unbiased validation,
and robust testing, contributing to a comprehensive
assessment of the model's generalization and predictive
capabilities.

The interface for the model was made using the Python’s 
Tkinter library. This can easily run Python programs like 
the model trained. It is cross-platform so, the same code 
works on Windows, macOS and Linux. 
Its simplicity and ease of use makes it straightforward and 
intuitive to create GUI’s. It allows for faster development 
and iteration of the user interface. 

IV. Results and Discussion

This research demonstrated the successful development 
and implementation of a water monitoring device that 
effectively stores readings in an online database and 
displays real-time results on a web application. The 
device's seamless integration with the web application 
allows for continuous monitoring of water quality, enabling 
timely decision-making and proactive management. 

Figure 6: MongoDB collection with readings from 
the sensors 
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The Q-charts plotted were identical to the known Q-charts, 
this supports the use of the equations generated from the 
trendline in Google sheets. With these equations, it means 
that it is not necessary to refer to the Q-charts when looking 
for the sub-index of a parameter. This meant that to get the 
sub-index for the five columns (DO, Phosphate, Nitrate, 
Turbidity and BOD) used to calculate the WQI used as the 
label, the five equations were used. 

𝑄%&' = 98.9 − 28.5𝑙𝑛𝑥																										(3) 
𝑄'& = 2.72 + 0.016𝑥 + 0.0243𝑥(						(4) 
𝑄)*+,)*-./ = 41 − 16.5𝑙𝑛𝑥																				(5) 
𝑄"!.0-./ = 102 − 22.5𝑙𝑛𝑥																						(6) 
𝑄.102 = 91.3 − 1.33𝑥 + 0.00739𝑥(				(7)

The optimal number of nodes in the hidden layer was found 
to be 21, this agrees with [14]. The learning rate for the 
optimiser was 0.01.  
Finding optimal hyperparameters overcomes challenges a 
trained model might experience like overfitting or 
underfitting. An inappropriate learning rate can lead to 
slow convergence during the training process. 

Table 5:Metric scores for the ANN model 

The metric scores represented a good model and supported 
the use of ANN in predicting the NSF-WQI. 
The trained ANN model was then compared with the 
analytical way of calculating the NSF-WQI. The results 
obtained were very close. This showed that a trained ANN 
model can be used in place of analytically calculating NSF-
WQI and is even faster and can work autonomously. 

The analytical method requires having to check the sub-
index (Qi) for each parameter on the Q-chart. After that, 
each sub-index would have to be multiplied by the weight 
of that parameter, the summation of those products would 
then give the value of the NSF-WQI. This is a tiresome 
process and may lead to errors when multiple values are 
being read especially with the immense data that would be 
generated from the water monitoring device working 
around the clock. With the model, this process is entirely 
removed quicken the determination of the WQI. 

Table 6: Analytical calculation of NSF-WQI 

The results of the analytical method and prediction 
demonstrated a close relationship, indicating the potential 
of the model to replace the analytical method. The model 
utilised AI to predict the water quality index based on the 
water parameters without the need of knowing the weights 
of the parameters or their sub-index value. The comparison 
showed high degree of accuracy and correlation between 
the two approaches, suggesting that the model can 
effectively replicate the results obtained through the 
analytical method. This implies that the model has the 
capability to serve as a reliable alternative to the labour-
intensive and time-consuming analytical method. 

V. Conclusion

This research presented the successful development of a 
water quality monitoring device capable of storing and 
displaying real-time readings from select water quality 
parameters. Additionally, an Artificial Neural Network was 
trained to predict NSF-WQI. The integration of the 

Metric Score 
R2 0.953 
MAE 0.853 
MSE 1.280 

Figure 9: ANN model prediction of 
NSF-WQI 

Figure 7: Web application display 

Figure 8: Replotted Q-chart for Biochemical 
Oxygen Demand 
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monitoring device with ANN provides a comprehensive 
solution for continuous water quality monitoring and 
assessment. The findings of this research highlight the 
potential of this approach in facilitating effective water 
management and decision making for ensuring safe and 
sustainable water resources. 

VI. Recommendations

Further study should focus on increasing the number of the 
of sensors in the water quality monitoring system to 
enhance the understanding and management of water 
resources. This would provide a more comprehensive and 
detailed assessment of water quality parameters enabling 
better identification of pollution sources and early 
detection of contamination events. Since the model used in 
this study utilised the NSF-WQI, adding the nine sensors 
needed to predict this quality index would make it possible 
to have a real-time prediction of the NSF-WQI. 
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