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Abstract: The integration of Internet of Things (IoT)
technologies in healthcare, particularly in Intensive
Care Units (ICUs), holds transformative potential for
patient monitoring and clinical decision-making.
However, performance is often limited by high network
latency and cybersecurity vulnerabilities, which are
especially critical in time-sensitive applications such as
remote monitoring and telemedicine. Achieving both
ultra-low latency and strong data confidentiality in
resource-constrained ICU environments remains a
major challenge, as traditional methods fall short of
meeting these dual requirements. This paper proposes a
machine learning (ML)-driven cybersecurity framework
that optimizes broadband Quality of Service (QoS) while
ensuring robust data security in ICU-based IloT
networks. The framework integrates supervised and
unsupervised learning models for dynamic, context-
aware adaptation to network conditions and emerging
threats. Key features include intelligent traffic
prioritization, secure communication protocols, and
adaptive bandwidth allocation. Expected outcomes are
reduced latency, improved confidentiality, and enhanced
reliability of ICU systems. Beyond technical
contributions, the framework promotes trust in digital
healthcare and advances interdisciplinary research
across ML, network optimization, and medical
cybersecurity.

Keywords: Internet of Things; Intensive Care Units;
Machine Learning; Cybersecurity; Quality of Service;
Data Confidentiality

I. INTRODUCTION

Modern life is greatly impacted by Internet of
Things (I0T) applications, particularly in intelligent
healthcare. Applications' seamless operation and
user experience depend on dependable Quality of
Service (QoS). However, as IoT systems become
more networked, they become more vulnerable to
cybersecurity attacks, necessitating the
implementation of robust security frameworks. To
retain security while still providing the necessary
performance, it is difficult to strike a compromise
between stringent QoS criteria and robust security
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measures that [oT applications demand. According
to some recent research, a system that combines
random forest for traffic categorization with
reinforcement learning for adaptive routing can
improve network security and performance in IoT-
enabled wireless sensor networks [1]. [2]developed
a machine learning security framework that uses
Software Defined Networking (SDN) and Network
Function Virtualization (NFV) to accurately
identify anomalies in Internet of Things devices.[3]
achieved a maximum throughput of 94% by
developing a  dynamic-progressive deep
reinforcement learning technique to enhance IoT
QoS. [4] With a 99.9% accuracy rate in identifying
cyberattacks, this study's machine learning (ML)-
based security model for Internet of Things (IoT)
devices outperforms previous models. Network
security and performance management have
historically been handled independently, which is
inappropriate for contemporary Internet of Medical
Things (IoMT) applications. The study outlines a
suggested architecture and assesses potential future
paths while investigating the creation of integrated,
intelligent frameworks that use machine learning
(ML) to achieve a thorough balance between
security and quality of service (QoS).

One promising strategy to address contemporary
challenges is machine learning (ML), which
enhances network security and efficiency through
adaptive and intelligent traffic handling. Unlike
static approaches, ML-driven models adjust to
evolving threat landscapes and traffic patterns,
providing context-aware solutions suited for
dynamic intensive care unit (ICU) environments.
This study proposes a novel ML-driven
cybersecurity framework to optimize broadband
quality of service (QoS) and ensure data
confidentiality in healthcare IoT systems. By
integrating supervised and unsupervised learning
models, the framework implements secure
communication protocols, intelligent traffic
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prioritization, and adaptive decision-making. The
proposed strategy aims to mitigate patient risks,
enhance the reliability of ICU operations, and
bolster confidence in digital healthcare technology
by reconciling network performance with security.

In ICU IoT networks, this work offers a hybrid
machine learning-driven approach that
simultaneously —optimizes latency and data
confidentiality. It combines secure communication
protocols with sophisticated resource management
to allow for context-aware, adaptive operation.
Through transdisciplinary  breakthroughs in
machine learning, network optimization, and
medical cybersecurity, the framework offers a
useful basis for smart healthcare systems.

II. RELATED WORK

IoT integration in healthcare has garnered a lot of
research interest, with studies concentrating on data
confidentiality, cybersecurity, and Quality of
Service (QoS) optimization. This section outlines
the research gap this work attempts to fill and
examines previous techniques taken in relation to
these subjects.

IoT and Broadband QoS in Healthcare

A higher quality of life and quicker access to
medical services are provided by the healthcare
industry's combination of IoT and cloud computing
[5]- Nevertheless, the need for real-time processing
and large data quantities make it difficult to
guarantee Quality of Service (QoS) [5] [6]. In
healthcare, narrowband IoT (NBIoT) offers a cost-
effective way for integrating wireless sensor
networks, especially for patient monitoring and
emergency scenarios. [7]. For healthcare systems to
function effectively, QoS metrics like latency,
throughput, and availability are essential[6]. To
mitigate QoS issues, fog computing can be used to
cut down on processing and transmission delays
related to cloud-based analysis of data gathered by
IoT devices [8]. This strategy can enhance reaction
times and the general quality of healthcare services
when paired with advanced computing and machine
learning [6] [8]. For healthcare IoT systems to send
patient data with the least amount of latency,
especially in intensive care units, dependable
broadband connections are essential. Previous
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studies have investigated edge computing,
congestion control techniques, and bandwidth
allocation algorithms to lower latency in medical
IoT networks. These methods increase the speed at
which data is transmitted, but they frequently ignore
security needs, making systems susceptible to
intrusions.

Cybersecurity Challenges in Healthcare IoT

To balance security and speed in IoT networks, the
Transport Layer Security (TLS) and Message
Queuing Telemetry Transport (MQTT) protocols
are crucial. Even if these actions result in higher
latency and lower throughput during peak loads,
they can nevertheless have a significant impact on
service quality. Combining the MQTT protocol with
TLS can reduce security overhead and data delay;
performance can be decreased by 62% for
encryption and authentication combined and by
53% for the maximum authentication period[9] [10]
[11][12]. For IoT communications to remain secure
and operate well, these studies emphasize the
necessity of optimized strategies that dynamically
modify security measures based on threat
assessments and operational demands.

Healthcare IoT devices are frequently targeted by
hackers due to the extremely sensitive nature of the
data they handle [13] developed a machine learning-
based intrusion detection system (IDS) that can
recognise fraudulent traffic using the UNSW-NB15
dataset.[14] proposed elliptic curve cryptography
(ECC), a low-power encryption method for
protecting portable devices. These techniques
improve network security, but they frequently
ignore QoS problems. In circumstances requiring
life-critical healthcare, high-security systems may
lead to increased processing overhead and latency.
Because medical information is important, hackers
often target IoT-enabled institutions. Access
control, encryption, and intrusion detection systems
(IDS) have all been widely utilized to safeguard
patient data [3]. However, many traditional
cybersecurity methods increase computer costs,
which exacerbates delay issues in critical care unit
operations. Trade-offs between security and
performance are still a common limitation.
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C. Machine Learning for QoS and Security

In the healthcare industry, machine learning (ML)
has become a potent instrument that provides
answers for a range of uses, such as cybersecurity,
diagnosis, and treatment [15]. Machine learning
(ML) approaches in cybersecurity can help shield
healthcare networks from ransomware assaults;
Random Forest is especially useful for early
prediction[16]. By predicting illnesses and finding
trends in medical data, machine learning algorithms
are helping to create effective decision support
systems for healthcare applications [17].
Additionally, the technology is being used in sectors
like neuroimaging, genetics, radiography, and
electronic medical records[18]. Even while machine
learning has the potential to completely transform
healthcare, there are still obstacles to overcome,
such as privacy and ethical issues and the
requirement for thorough testing and validation of
ML models[15, 18]. Recently, there has been study
on the use of machine learning to improve network
performance and security. Unknown threats have
been successfully identified by unsupervised
methods like clustering and autoencoders, while
anomaly detection and traffic classification have
been accomplished by supervised models like
decision trees and random forests. ML has the
potential to improve healthcare delivery and
security overall, but more study and development
are required. Additionally, machine learning is
being implemented in IoT environments, which
calls for careful consideration of data protection and
performance. In order to optimize bandwidth
distribution and reduce congestion in loT networks,
other works make use of reinforcement learning.
Despite these developments, there are still few
frameworks that combine cybersecurity measures
designed for ICU-based IoT systems with ML-
driven QoS optimization.

Table 1: Comparison of Related Works on QoS,
Security, and ML in Healthcare IoT
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Table2: Comparative Analysis of Current Solutions

for QoS and Cybersecurity in Healthcare IoT
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Adaptive security, data confidentiality, and machine
learning-based traffic management must all be
included into a new framework in order to handle
the particular trade-offs between security and
latency in critical care IoT.

D. Research  Gaps in  ML-Driven
Cybersecurity for Critical Care IoT

Three major shortcomings are identified in the
literature: ML-driven solutions are not sufficiently
adapted for resource-constrained intensive care unit
contexts; QoS optimization and cybersecurity are
not fully integrated; and latency and confidentiality
trade-offs are not evaluated in real-world healthcare
scenarios. To improve data handling in critical care,
a holistic strategy is required to integrate data
confidentiality, adaptive security, and ML-based
traffic management.

Table3: Research gap identified
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Inadequate
Real-Time
Adaptability

Solutions
frequently lack
real-time
adaptability for
dynamic
QoS/confidentiality
needs and rely on
single, heavy
security
mechanisms,

(191,
[20], [21]
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leading to high
computational
overheads and
missed
security/traceability
integration.

Independent
Security and

QoS

Optimization

Security and QoS
are treated
separately; security
measures (e.g.,
protocols with
TLS) severely
degrade  network
performance
(latency,
throughput). There
is a lack of co-
optimization
strategies.

Incomplete
Healthcare-
Specific
QoS

Integration

Systems fail to
integrate  crucial
healthcare-specific
QoS measures like
latency adequately.
The potential of
Al/Edge
Computing for
optimizing  these
critical metrics is
currently  under-
leveraged and not
systematically
evaluated.

[27], [28]

Inefficient
Models for
Constrained
Devices

Existing ML
models are often
too heavy and
resource-intensive
for resource-
constrained  ICU
IoT devices,
demanding novel
lightweight,

intelligent models
to ensure both high
security and energy
efficiency.

[29], [30],
[31], [32],
[31, 33]
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The current Internet of Things (IoT) environment in
intensive care units (ICUs) poses a number of
significant issues, chief among them being the
absence of integrated Quality of Service (QoS) and
strong security measures. Additionally, the systems
show little flexibility in response to these
environments' intrinsic resource constraints.
Moreover, comprehensive evaluations of the trade-
offs between secrecy and latency, a critical balance
for real-time applications are scarce. A thorough
investigation that effectively combines the three
crucial features of low latency, high quality of
service, and lightweight cybersecurity is thus now
lacking in the field of remote patient monitoring.
Last but not least, although machine learning is
widely used in the healthcare industry for anomaly
detection, its integration with intelligent routing or
bandwidth optimization is less prevalent, offering a
substantial lost chance to increase efficiency.

In order to overcome existing constraints, the
proposed study intends to create an Integrated QoS
and Security Framework utilizing a Machine
Learning (ML)-based approach. This would
optimize throughput, latency, and jitter while also
guaranteeing confidentiality and anomaly detection
in network systems. Hybrid supervised and
unsupervised Machine Learning (ML) and adaptive
security mechanisms are used to optimize both
security and Quality of Service (QoS) in Intensive
Care Unit (ICU) Internet of Things (IoT) networks.
The aim is to maximize confidentiality and
minimize latency, which will be verified in actual
ICU scenarios.

III. PROPOSED FRAMEWORK

In order to address the twin problems of high latency
and cybersecurity vulnerabilities in healthcare IoT
systems, namely in critical care units (ICUs), we
have proposed a machine learning-driven
cybersecurity framework. To guarantee strong data
secrecy and broadband QoS optimization, the
system combines dynamic security measures,
adaptive bandwidth allocation, and intelligent traffic
management.

A. Framework Overview

The proposed system is designed as a layered
architecture that unifies network optimization and
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cybersecurity. At its core, the framework employs a
hybrid machine learning approach that combines
supervised models (for traffic classification and
prioritization) with unsupervised models (for
anomaly and intrusion detection). This dual strategy
ensures context-aware decision-making while
maintaining adaptability to evolving threats and
network conditions.
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Figures 1: Proposed Framework Architecture

Table 4: Combined QoS and Confidentiality
Optimization: A Comparison of Conventional and
ML-Driven IoT Security
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s Driven Framework

Static bandwidth allo
cation, priority sched
uling

Adaptive bandwidth allo
cation using ML

Strong encryption pr | Lightweight and adapti
otocols but high late ve encryption integrated

ncy with ML

Rule- Real-

based IDS (reactive, time anomaly detection (
rigid) ML-based, proactive)

Optimizes either Qo Joint optimization: Low
S or Security, not bo | Latency and Confidentia
th lity

Not adaptive to ICU Context-aware, self-
traffic surges or new | learning, dynamic respo
attacks nse

IV. METHODOLOGY

In order to improve research results and effect,
hybrid research approaches integrate many
techniques and disciplines. The design science will
develop the framework for this study, while the
experimental quantitative will assess the metrics,
including data security (data confidentiality) metrics
and quality of service metrics, respectively. In the
discipline of information systems research, design
science research (DSR) has gained popularity within
the last ten years. Hevner et al. (2004) introduced
seven principles for effective DSR in their seminal
work. These principles were examined from a
process perspective and proposed changes to
improve their applicability [34]. [35] developed and
refined a six-step DSR process that includes
problem identification, solution objectives, design
and development, demonstration, assessment, and
communication. Offering a structured framework
for conducting and presenting DSR in information
systems is the aim of this methodology.

Research Design and Approach

The study uses a hybrid approach, combining
several approaches to produce better results. Design
Science Research (DSR), which focuses on the
development of a new, efficient framework, is the
main foundation of this design. The goal is to
specifically design, build, and assess a cybersecurity
framework powered by machine learning with the
goal of improving broadband Quality of Service
(QoS) and data confidentiality in Internet of Things
(IoT) systems. The development and iterative
improvement of the framework adhere to Design
Science principles, producing a tangible artifact.

Evaluation and Data

The study uses an experimental quantitative
technique to thoroughly assess the framework. This
entails evaluating the created item against important
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metrics by testing it on pertinent datasets. In order
to ensure relevance to crucial IoT applications, the
datasets used include simulated ICU traffic in
addition to well-known medical and critical care
data repositories like PhysioNet and MIMIC-IIIL. To
evaluate various aspects of the cybersecurity and
QoS processes, the evaluation uses a variety of
Machine Learning (ML) Models, including Random
Forest (RF), Support Vector Machine (SVM),
Reinforcement Learning (RL) employing Q-
learning, and Autoencoders.

The evaluation demonstrates that the proposed
framework balances ultra-low latency and strong
data confidentiality while maintaining resource
efficiency. This dual optimization addresses critical
needs in ICU-based IoT environments, where both
speed and security are vital for patient safety.

Key Performance Metrics

A wide range of measures that are essential for
network security and performance will be used to
evaluate the effectiveness of the developed
framework and its machine learning models.
Latency, jitter, and throughput are some of the
quantitative metrics used to assess the improvement
in broadband quality of service. Metrics like
detection accuracy (for identifying threats) and
resource efficiency (for sustainable deployment on
IoT devices) are used to assess the security
component and efficacy of the ML-driven defense
mechanisms. The resultant cybersecurity solution is
guaranteed to be both innovative and empirically
successful because to this integrated methodological
framework, which combines DSR for design with
experimental —quantitative methodologies for
validation.

VI. CONCLUSION

In order to improve patient outcomes, foster trust,
and stimulate interdisciplinary research to increase
system responsiveness and scalability, it is
imperative that IoT healthcare delivery struck a
balance between data security, which safeguards
sensitive patient information, and Quality of Service
(QoS), which guarantees quick, dependable access
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to critical data in critical settings like the intensive
care unit.

A structured comparison of a few research on
broadband QoS optimization, cybersecurity, and
machine learning in healthcare IoT systems is
presented in this subsection in order to summarize
the results from the body of existing literature. In
their respective fields, these research provide
significant contributions. Some concentrate on
protecting sensitive health data, others on
guaranteeing dependable network performance, and
some use machine learning approaches for dynamic
adaptation. A closer look, however, shows that the
majority of works address these issues separately
and frequently fail to integrate security enforcement
procedures with QoS needs. Improved speed may
erode data protection, while increased security may
jeopardize timeliness in latency-sensitive healthcare
scenarios like telemedicine or remote patient
monitoring.
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