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Abstract - Maize is a staple food crop in Zambia, making 

accurate yield prediction essential for food security and 

agricultural planning. This study presents an advanced deep 

learning approach for maize yield prediction that integrates 
Sentinel-2 satellite imagery with climate data. We develop a 

scalable and interpretable hybrid CNN-LSTM model to 

capture both spatial and temporal patterns of crop growth. 

The CNN component extracts spatial features from Sentinel-

2 multispectral images (including vegetation indices such as 

NDVI and EVI), while the LSTM component learns temporal 

dynamics from time-series climate variables (rainfall, 

temperature, humidity). The model is trained and validated 

using historical yield records from major maize-growing 

regions in Zambia, demonstrating high predictive accuracy 

and outperforming traditional yield estimation methods. 
Accurate yield forecasts from this model enable early 

warnings of potential crop shortfalls, allowing farmers to take 

timely action to mitigate losses. Additionally, the predictions 

provide policymakers with insights for managing grain 

reserves, market supply, and food security strategies. By 

leveraging deep learning and remote sensing, this work offers 

a decision-support tool that contributes to sustainable 

agricultural practices and climate resilience in SSA, bridging 

the gap between academic and practical applications. 

 

Keywords - Maize yield prediction; CNN-LSTM; Sentinel-2; 

climate data; remote sensing; agricultural decision-making; 

Zambia. 

I. INTRODUCTION  

     Maize is a crucial staple food in Sub-Saharan 

Africa(SSA), providing over 50% of daily caloric intake and 

supporting food security, employment, and rural 

development[1][2]. The crop's significance is further 

emphasised by its contribution to the agricultural sector, 

which accounts for 20% of the country's GDP and employs 

over 71% of the population[3]. Maize production faces 

challenges like low productivity, climate change impacts, and 

market volatility, necessitating strategic interventions to 
improve its economic role[1][4]. Maize is a vital component 

of Zambia's agricultural economy, ensuring food security and 

reducing poverty[5]. Zambia's agriculture, predominantly 

rainfed, is facing significant challenges due to climate 

variability, which impacts food security and planning[3]. 

Predicting maize yield and food security is a complex 

challenge due to climate change, data limitations,  

and advanced modelling techniques[7][8]. Climate change  

affects temperature and precipitation patterns, leading to 

increased variability and frequency of extreme weather 

events, affecting yields by 5-14% in warm areas and 25-32% 

in precipitation reductions[8].  

     However, traditional maize yield prediction methods in 
Zambia rely on field-based assessments and farmer 

estimations, lacking precision and labour-intensiveness, 

while advanced techniques like crop simulation models are 

less common[9]. Zambia's Ministry of Agriculture conducts 

an annual Crop Forecast Survey(CFS) to estimate production 

before harvest, alerting policymakers to potential surpluses or 

deficits. The 2023/24 season projected maize production at 

1.51 million tonnes, a 53.7% decline from the previous 

year[10]. The early warning of a poor harvest led to 

immediate policy responses. In 2024, the government 

declared a disaster due to a projected maize deficit, 
implementing relief measures such as importing over 

600,000 tonnes of white maize, releasing stocks for 

community sales, and encouraging private grain imports to 

avert a deeper food crisis reported by [11]. Zambia faced a 

severe El Niño in 2023/2024, resulting in a 30-40% reduction 

in maize harvest due to drought, impacting more than 1 

million hectares of cropland and creating a national disaster 

that affected food security and economic growth[11]. 

        In recent years, advancements in remote sensing 

technologies, artificial intelligence, and deep learning have 

revolutionised the accurate and efficient monitoring and 

forecasting of crop yields[12]. The Sentinel-2 satellite from 
the European Space Agency(ESA) offers high-resolution 

multispectral imagery ideal for agricultural applications like 

vegetation health monitoring, land cover classification, and 

crop yield estimation[13]. Climate data, including rainfall, 

temperature, and humidity, has become more accessible and 

granular, providing data-driven insights into crop 

performance under various environmental conditions[14]. 

Global studies reveal that integrating deep learning models, 

Convolutional Neural Network (CNNs), and Long Short-

Term Memory (LSTM) can significantly enhance crop yield 

predictions by capturing spatial and temporal patterns in large 
datasets[15].  

Therefore, this study aims to develop a deep learning 

model using CNN and LSTM architectures, as shown in 

Figure 1, to predict corn yield in Zambia based on Sentinel-2 

satellite imagery and climate data. Sentinel-2 imagery allows 

the extraction of essential crop health information, which can 

be combined with climate variables to enhance prediction 

models.[16]. The hybrid model, CNN+LSTM, has the 

potential to improve crop yield prediction in Zambia and the 

SSA region. 
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The relevant studies pertaining to this area of study are 
discussed in Section II, which is expanded upon in this 
publication.  In Section III, the design science research 
methodology (DSRM) that applies real-world experience to 
this research is described, along with the methodologies 
employed in the article.  The evaluation techniques and 
metrics utilised to determine the yield tons per hectare are 
highlighted in Section IV.  Finally, Section V discusses the 
paper's conclusion. 

II. RELATED WORKS 

The current crop yield prediction in Zambia and the SSA 

region has been utilising traditional mechanistic models and 

data-driven models, which struggle with scalability and 
adaptability, while CNN-LSTM hybrids leverage deep 

learning architectures for spatial-temporal data processing, 

outperforming models like Support Vector Regressors and 

Decision Trees in metrics [17]. The integration of attention 

layers and optimisation techniques further enhances accuracy 

and robustness in dynamic agricultural environments. 

Sentinel-2 imagery improves machine learning models' input 

quality, with CNNs outperforming traditional methods in 

spatial analysis. Additionally, climate variable integration 

enhances yield estimation [18]. 

Several studies highlight the effectiveness of these 
advanced approaches. For example, [17] developed a hybrid 

model using 1D CNN, LSTM, and an attention mechanism to 

predict rice and wheat yields in India, outperforming 

traditional models with an RMSE of 0.017 and an R² of 0.967. 

Similarly, [19] developed a deep CNN-LSTM model for 

predicting soybean yields at the county level in the US, 

integrating remote sensing data (MODIS Land Surface 

Temperature and Surface Reflectance) and weather variables, 

resulting in improved prediction accuracy compared to 

standalone CNN or LSTM models. In Northeast China, [20] 

evaluated a CNN-LSTM-Attention model for predicting 
maize, rice, and soybean yields from 2014 to 2020, showing 

improved accuracy over traditional models like random forest 

and XGBoost. Moreover, [21] developed a CNN-RNN 

framework to predict corn and soybean yields in the U.S. 

Corn Belt, achieving 9% and 8% RMSE, respectively. Lastly, 

[22] developed a hybrid deep learning framework using 

CNN, GAT, and LSTM modules to predict soybean yields 

across 1,115 counties in 13 U.S. states from 1980–2018, 

resulting in a 5% reduction in RMSE and a 6% improvement 

in R² compared to existing models. 
Despite substantial advancements in crop yield prediction 

through machine learning and deep learning, several 
significant research gaps persist that this study aims to 
address. Firstly, many existing models are region-specific, 
having been developed and tested in areas such as Northeast 
China and India, and thus lack validation in diverse agro-
ecological contexts [20]. This geographic bias limits the 
generalizability of current models to countries like Zambia, 
where climate conditions, soil types, and cropping systems 
differ considerably. Furthermore, the majority of models do 
not address climatic variability in Sub-Saharan Africa, despite 
its crucial influence on maize yield[23]. As such, there is a 

pressing need for yield prediction frameworks adapted to 
tropical environments and capable of handling spatial and 
temporal variability across seasons and regions. 

Secondly, while numerous studies have successfully 
demonstrated the potential of hybrid deep learning 
architectures such as CNN-LSTM-Attention in integrating 
spatial and temporal data[24] integration of multi-source 
data-including remote sensing indices, climatic variables, and 
soil properties-remains underexplored in a unified 
framework. Most existing models utilise either remote 
sensing or climate data in isolation, resulting in limited 
predictive scope [25][26]. Moreover, the interpretability of 
these deep learning models remains a major concern, as they 
function largely as “black boxes” with limited insight into the 
agronomic factors influencing yield[27][28]. This lack of 
transparency hinders adoption among farmers and 
agricultural decision-makers who require actionable insights, 
not just predictions. 

Lastly, there is limited progress in developing models that 

support real-time, in-season yield forecasting using dynamic 
data streams from satellites or weather stations. Many studies 

conduct retrospective analyses without extending their 

models to operational or real-time use[29][30]. Additionally, 

the computational complexity of deep learning models often 

renders them impractical for low-resource settings, which are 

common in developing countries[31]. Few studies have 

optimised their models for deployment in such environments 

or designed user-centric interfaces that enable farmers and 

policymakers to utilise the outputs effectively. These 

limitations collectively highlight the need for scalable, 

interpretable, and region-specific hybrid models, such as the 

CNN-LSTM framework proposed in this research, to enable 
accurate maize yield forecasting in Zambia using integrated 

satellite and climatic data. 

The studies show that combining CNN and LSTM 

architectures with climate data for accurate crop yield 

prediction, along with attention mechanisms and spatial 

modelling techniques, enhances their ability to capture 

complex patterns. 

 

A. Model Framework and Architecture 
The model architecture uses CNN+LSTM networks to 

predict maize yields accurately. It uses Sentinel-2 imagery 
and climate data, extracting spatial features and modelling 
temporal evolution. The model is chosen for accurate crop 
yield prediction as shown in Figure 1 below: 
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Figure 1: Model Architecture 

The model inputs will be multi-temporal image patches 
(or features) and synchronised climate vectors. The input is a 
time sequence of multi-band Sentinel-2 data and associated 
weather values across the growing season. 

CNN Layers (Spatial Feature Extraction) 
A stack of 2D convolutional layers will process the multi-

band imagery. Typical design: several conv layers ( 3×3 
kernels, 32→64→128 filters) with ReLU activations, each 
followed by max-pooling to reduce spatial resolution[32]. 
Batch normalisation may be used to speed convergence. 
After the final conv layer, the output is a high-level spatial 
feature map (or vector). A dropout layer (p≈0.2) is inserted 
before passing features to the LSTM to mitigate overfitting. 

 
 
 
LSTM Layers (Temporal Modelling) 
 The sequence of feature vectors (one per time step) is 

input to LSTM units. We may use one or more LSTM layers 
( 64 or 128 hidden units, possibly bidirectional). These 
capture the temporal evolution of the extracted spatial 
features. In parallel, climate features for each time step can 
be concatenated with the CNN features before the LSTM or 
fed as a second input branch that merges later. This multi-
source fusion has been effective in yield prediction[33][34], 
combining CNN-extracted features with climate variables in a 
Bi-LSTM to predict wheat yield, achieving R²≈0.81[33]. 

 
Output Layer 
The final LSTM output (at season end) feeds a fully 

connected (dense) layer that produces the yield estimate. A 
linear activation can be used for regression; alternatively, a 
scaled tanh activation (with outputs re-scaled) may be used 
if yields are normalised, as some studies have done[32]. The 
network is trained to minimise the mean-squared error 
between predicted and observed yield. 

Rationale 
 This CNN+LSTM architecture is chosen because “the CNN 

learns spatial features and the LSTM is used to learn the 
temporal features extracted by the CNN[35]. In other words, 
CNN layers will recognise spatial patterns (canopy structure, 
vigour) in each image, and LSTMs will model how these 
patterns change through time (reflecting phenology and 

weather effects). Such a hybrid model effectively integrates 
spatiotemporal data[35][32]. Prior studies confirm its 
suitability: for instance, a soybean yield model used 
CNN+LSTM to combine spectral and temporal data and 
achieved a greatly reduced RMSE[35]. Architecture details 
(number of layers, units) will be determined by 
experimentation and computational constraints. 

B. Proposed model 
The chapter presents a deep learning model for 

predicting maize yield using Sentinel-2 imagery and temporal 
climate variables. The model captures crop growth dynamics 
across Zambia, improving agricultural yield forecasting 
precision. It uses a CNN for spatial feature extraction and an 
LSTM network for temporal dependencies. Feature fusion is 
employed for joint learning as shown in Figure 2 below. 

 

Figure 2: Proposed model 

This study presents a deep learning model for maize yield 
prediction in Zambia, utilising multitemporal Sentinel-2 
imagery and climate data. The model uses CNN to extract 
spatial features from satellite imagery, while LSTM learns 
long-term temporal relationships between climatic 
conditions and maize yield. The model uses feature fusion 
and fully connected layers to improve performance by 
integrating spatial-spectral information with climate trends. 
The output layer generates a continuous value representing 
predicted maize yield in tons per hectare, which can be 
aggregated and visualised at the district level for food 
security planning and early warning systems. The model's 
accuracy is assessed using metrics Root Mean Square 
Error(RMSE), Mean Absolute Error(MAE), and coefficient of 
determination(R2). 

III. RESEARCH DESIGN AND APPROACH 

The research aims to create a predictive framework for 
maize yield in Zambia using the Design Science Research 
Methodology (DSRM). The model, a hybrid deep learning 
model, uses Sentinel-2 satellite imagery and climate data to 
enhance forecasting accuracy and reliability. 

A. Methodological framework 
The aim is to develop a CNN-LSTM architecture, 

combining Sentinel-2 satellite imagery and climatic variables, 
to predict maize yield at the district level in Zambia. The 
model extracts spatial features from Sentinel-2 imagery and 
captures temporal patterns in climate time series data. The 
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model will be tested on real-world datasets and evaluated 
using metrics RMSE, MAE, and (R²)[36][37]. The findings are 
then disseminated through academic publications and 
stakeholders in agriculture, emphasising the implications for 
precision farming and food security strategies. 

B. Data Collection and Sources 
The proposed methodological framework for predicting 

maize yield involves data integration, preprocessing, feature 
engineering, construction, training, optimisation, and 
evaluation. It begins with data alignment, preprocessing, 
feature engineering, and hybrid architecture design. The 
model is trained on historical data, optimised, and evaluated 
for accuracy using RMSE, R², and MAE metrics. The model 
architecture combines spatial and temporal information, 
with convolutional layers extracting spatial patterns and 
LSTM layers modelling temporal evolution. The final output 
layer produces a continuous yield estimate. The model is 
trained on historical data, with regular monitoring and 
evaluation using regression metrics. The study uses Sentinel-
2 satellite imagery, climate data, and ground truth data to 
predict maize yield with key spectral bands at 10m 
resolution, employing climate data sourced from reliable 
providers CHIRPS and ERA5, as shown in Table 1 below. 

 
Table 1: Spatial and Temporal Data Sources for Maize Yield 
Prediction 

Data 

Type 

Source Resoluti

on / 

Frequen

cy 

Key 

Variables 

/ Bands 

Usage 

Spatial 

Data 
(Sentin

el-2 

Imager

y) 

Copernic

us Open 
Access 

Hub, 

Google 

Earth 

Engine 

10 m 

(B2, B3, 
B4, B8), 

20 m 

(B5–B7, 

B11, 

B12) 

resample

d to 10 m 

Blue, 

Green, 
Red, NIR, 

Red-edge, 

SWIR; 

NDVI, 

red-edge 

indices 

Covers 

maize 
season 

(Nov–

Apr); 

used for 

spatial 

crop 

monitori

ng;  

Tempor

al Data 

(Climat

e) 

CHIRPS, 

ERA5 

CHIRPS

: ~5 km; 

ERA5: 

0.25° 
(~28 

km); 

daily or 

dekadal 

summari

es 

Precipitati

on, 

temperatu

re 
(min/max)

, radiation, 

humidity 

Aligned 

with 

imagery 

dates, 
downscal

ed to 

Sentinel-

2 grid 

Ground 

Truth 

Yield 

Data 

Zambia 

Ministry 

of 

Agricultu

re, 

FAOSTA

T and 
FRA 

Region-

level or 

aggregat

ed 

national 

statistics 

Observed 

maize 

yield 

(t/ha) 

Used as a 

model 

target 

variable, 

spatially  

The Sentinel-2 Imagery will use MultiSpectral Instrument 
data from the Copernicus Open Access Hub or Google Earth 
Engine to cover the maize growing season from November to 
April. The data will be preprocessed using a cloud and cirrus 
mask, atmospheric correction, spatial co-registration, and 
vegetation indices. Climate data will be acquired using 
CHIRPS and ERA5 reanalysis, with climate time series for the 
same dates as the imagery. This data will be used to improve 
maize yield forecasts, highlighting the importance of weather 
data in remote sensing. 

IV. MODELLING FRAMEWORK 
The proposed framework aims to accurately predict 

maize yield by combining multi-temporal Sentinel-2 imagery 
of each maize field with climate time-series (rainfall, 
temperature, and humidity) as inputs. This approach is 
motivated by prior findings that deep models extract rich 
representations from high-dimensional data and often 
surpass conventional machine learning methods in yield 
forecasting accuracy. The model comprises an encoder-
decoder architecture, where each Sentinel-2 image is input 
into the CNN block, which applies convolution and pooling 
operations to extract high-level spatial features. The 
sequence of CNN feature vectors is fed into an LSTM layer to 
capture temporal dependencies, and climate inputs (rainfall, 
temperature, humidity) are integrated by concatenation with 
the CNN features before the LSTM or via a parallel branch 
merged in a fusion layer. The LSTM's output is then passed 
through one or more dense layers to produce the final yield 
estimate. The theoretical underpinnings of this approach are 
that CNNs are well-suited to processing spatial image data, 
while LSTMs are designed for sequential data. Hybrid CNN-
LSTM models leverage both strengths, improving predictive 
power in crop yield modelling. 

A. Components of the Framework 
The CNN-LSTM model is a hybrid approach that uses 

convolutional layers, batch normalisation, ReLU activation, 
and Max Pooling layers to predict maize yield. It processes 
temporal sequences, leveraging memory capabilities and 
incorporates climate data fusion. The output layer produces 
yield predictions, with a loss function for accurate numerical 
estimation. The model is trained to minimise a regression 
loss, typically MSE, between predicted and observed yields. 
The model is optimised using stochastic gradient descent 
with an adaptive optimiser (Adam). The research introduces 
innovative crop yield prediction techniques, combining 
Sentinel-2 imagery with local climate time series for small-
scale maize prediction in Zambia. The hybrid CNN-LSTM 
architecture is tailored for field-level resolution and climate 
seasonality, addressing gaps in existing remote sensing for 
smallholder farmers in SSA. The approach leverages the 
synergy of satellite and climatic inputs to improve yield 
accuracy, making it an innovation in this context. As shown in 
Figure 3, the components of the framework are used. 
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Figure 3: Components of the framework 

B. Assumptions and constraints 
The proposed methodology assumes cloud-free Sentinel-

2 data during the maize growing season, accurate field 
delineation, data quality from historical yield records and 
climate data, crop consistency, significant computational 
resources for training, and transferability. It also assumes 
sufficient clear-sky images, accurate delineation of individual 
fields, accurate historical yield labels and climate records, 
uniform agronomic practices within the study region, and 
access to suitable GPUs or compute clusters. The model is 
assumed to generalise to future seasons, despite potential 
limitations due to climate or farming practices changes. 

C. Evaluation methods and metrics 

The proposed model will be evaluated using regression 

metrics and visual diagnostics, including R2, RMSE and 

MAE. Cross-validation, statistical significance assessment, 

and visual evaluations will be employed to ensure robustness 

and validity. Benchmarking against simpler models will 

demonstrate the added value of the CNN-LSTM approach, as 
shown in Figure 3  below: 

 

Figure 4: Model Evaluation 

Primary Metrics: Model accuracy will be assessed using 

regression metrics. The Coefficient of Determination (R²) 

indicates the proportion of variance explained, and the Root 

Mean Squared Error (RMSE) measures average prediction 

error magnitude[32]. We will also compute Mean Absolute 

Error (MAE) to complement RMSE[38]. Lower RMSE/MAE 

and higher R² indicate a better fit.  

The metrics formulas to be used are: 

Coefficient of Determination (R²)  

Where: 

 
• SS_res = Residual Sum of Squares = Σ(yᵢ - ŷᵢ)² 

• SS_tot = Total Sum of Squares = Σ(yᵢ - ȳ)² 

• yᵢ = Actual observed value 

• ŷᵢ = Predicted value by the model 

• ȳ = Mean of actual observed values 

• n = Number of observations 

Table 2: Interpretation of R² 

R² 

Value 

Interpretation 

1.0 Perfect prediction — all data points fall exactly 

on the regression line 

0.9 – 

1.0 

Excellent fit — model explains most of the 

variance 

0.5 – 
0.9 

Moderate fit — model explains some variance, 
but there's room for improvement 

0.0 – 

0.5 

Poor fit — model explains little of the variance 

< 0.0 Worse than a horizontal mean-line predictor — 

model introduces error 

 

RMSE Formula 

This is a commonly used metric in crop yield prediction for 

measuring the accuracy of a predictive model. It computes 

the square root of the average of the squared differences 

between observed and predicted values. 

        

  Where: 

n = Number of observations (fields, districts, or periods) 

yᵢ = Actual observed maize yield (in tons per hectare) 

ŷᵢ = Predicted maize yield from the model 

(yᵢ - ŷᵢ)² = Squared difference between observed and predicted 

yields 

Relevance in Maize Yield Prediction 

Captures prediction accuracy and penalises large errors more 
heavily. 

Results are interpretable in the same units as the output 

variable (tons/ha). 

Facilitates comparison of various machine learning models, 

including CNN-LSTM, Random Forest, etc.        

MAE Formula 

The Mean Absolute Error (MAE) is a fundamental evaluation 

metric used in machine learning and crop yield prediction. It 

measures the average magnitude of the errors in a set of 

predictions, without considering their direction. 

 

Where: 

[1]. n = Total number of observations (fields, districts, or time 

periods) 

[2]. yᵢ = Actual observed maize yield (in tons per hectare) 

[3]. ŷᵢ = Predicted maize yield from the model 
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[4]. |yᵢ - ŷᵢ| = Absolute error between observed and predicted 

yields 

Relevance in Corn Yield Prediction 

• Easy to interpret since it uses the same unit as the 

predicted variable (tons/ha). 

• Less sensitive to large errors or outliers compared to 

RMSE. 

• Complements RMSE by providing an additional 

perspective on model performance. 

Cross-Validation Statistics - When using k-fold CV, report 

the mean and standard deviation of metrics across folds. For 

example, [39] computed R² and RMSE along with their 

standard deviations from repeated 10-fold cross-

validation[40]. This quantifies confidence in the results. 

Statistical Testing: If comparing two models, paired tests 

(paired t-test) on error metrics will check if differences are 
statistically significant. 

Visual Diagnostics - Scatter plots of predicted vs. observed 

yield (with 1:1 line) will be used to visually assess 

performance. Residual plots (error vs. predicted) and maps of 

spatial error distribution will help identify systematic biases. 

Feature importance (via ablation or SHAP analysis) can 

reveal which inputs most influence predictions. 

Benchmarking - Performance will be compared against 

simpler approaches. For instance, a multiple linear regression 

on NDVI and climate features or a Random Forest model will 

be trained as a benchmark. Demonstrating that CNN-LSTM 

outperforms these will justify its complexity. 

V. CONCLUSION 

This research proposes a novel deep learning framework 

that integrates Sentinel-2 satellite imagery and climate data 
using a hybrid CNN-LSTM model to predict maize yield in 

Zambia. The approach addresses limitations of traditional 

yield estimation methods by capturing both spatial and 

temporal patterns critical to crop development. The model 

leverages multispectral imagery and climatic variables to 

enable accurate, timely, and location-specific predictions that 

can inform early warning systems, agricultural planning, and 

food security interventions. By incorporating modern AI 

techniques into agricultural decision-making, the study 

contributes to precision agriculture, enhances climate 

resilience, and supports national efforts in achieving 

sustainable food systems. 
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