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Abstract - Maize is a staple food crop in Zambia, making
accurate yield prediction essential for food security and
agricultural planning. This study presents an advanced deep
learning approach for maize yield prediction that integrates
Sentinel-2 satellite imagery with climate data. We develop a
scalable and interpretable hybrid CNN-LSTM model to
capture both spatial and temporal patterns of crop growth.
The CNN component extracts spatial features from Sentinel-
2 multispectral images (including vegetation indices such as
NDVI and EVI), while the LSTM component learns temporal
dynamics from time-series climate variables (rainfall,
temperature, humidity). The model is trained and validated
using historical yield records from major maize-growing
regions in Zambia, demonstrating high predictive accuracy
and outperforming traditional yield estimation methods.
Accurate yield forecasts from this model enable early
warnings of potential crop shortfalls, allowing farmers to take
timely action to mitigate losses. Additionally, the predictions
provide policymakers with insights for managing grain
reserves, market supply, and food security strategies. By
leveraging deep learning and remote sensing, this work offers
a decision-support tool that contributes to sustainable
agricultural practices and climate resilience in SSA, bridging
the gap between academic and practical applications.

Keywords - Maize yield prediction; CNN-LSTM; Sentinel-2;
climate data; remote sensing, agricultural decision-making;
Zambia.

I.  INTRODUCTION

Maize is a crucial staple food in Sub-Saharan
Africa(SSA), providing over 50% of daily caloric intake and
supporting food security, employment, and rural
development[1][2]. The crop's significance is further
emphasised by its contribution to the agricultural sector,
which accounts for 20% of the country's GDP and employs
over 71% of the population[3]. Maize production faces
challenges like low productivity, climate change impacts, and
market volatility, necessitating strategic interventions to
improve its economic role[1][4]. Maize is a vital component
of Zambia's agricultural economy, ensuring food security and
reducing poverty[5]. Zambia's agriculture, predominantly
rainfed, is facing significant challenges due to climate
variability, which impacts food security and planning[3].
Predicting maize yield and food security is a complex
challenge due to climate change, data limitations,
and advanced modelling techniques[7][8]. Climate change
affects temperature and precipitation patterns, leading to
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increased variability and frequency of extreme weather
events, affecting yields by 5-14% in warm areas and 25-32%
in precipitation reductions[8].

However, traditional maize yield prediction methods in
Zambia rely on field-based assessments and farmer
estimations, lacking precision and labour-intensiveness,
while advanced techniques like crop simulation models are
less common[9]. Zambia's Ministry of Agriculture conducts
an annual Crop Forecast Survey(CFS) to estimate production
before harvest, alerting policymakers to potential surpluses or
deficits. The 2023/24 season projected maize production at
1.51 million tonnes, a 53.7% decline from the previous
year[10]. The early warning of a poor harvest led to
immediate policy responses. In 2024, the government
declared a disaster due to a projected maize deficit,
implementing relief measures such as importing over
600,000 tonnes of white maize, releasing stocks for
community sales, and encouraging private grain imports to
avert a deeper food crisis reported by [11]. Zambia faced a
severe El Nifio in 2023/2024, resulting in a 30-40% reduction
in maize harvest due to drought, impacting more than 1
million hectares of cropland and creating a national disaster
that affected food security and economic growth[11].

In recent years, advancements in remote sensing
technologies, artificial intelligence, and deep learning have
revolutionised the accurate and efficient monitoring and
forecasting of crop yields[12]. The Sentinel-2 satellite from
the European Space Agency(ESA) offers high-resolution
multispectral imagery ideal for agricultural applications like
vegetation health monitoring, land cover classification, and
crop yield estimation[13]. Climate data, including rainfall,
temperature, and humidity, has become more accessible and
granular, providing data-driven insights into crop
performance under various environmental conditions[14].
Global studies reveal that integrating deep learning models,
Convolutional Neural Network (CNNs), and Long Short-
Term Memory (LSTM) can significantly enhance crop yield
predictions by capturing spatial and temporal patterns in large
datasets[15].

Therefore, this study aims to develop a deep learning
model using CNN and LSTM architectures, as shown in
Figure 1, to predict corn yield in Zambia based on Sentinel-2
satellite imagery and climate data. Sentinel-2 imagery allows
the extraction of essential crop health information, which can
be combined with climate variables to enhance prediction
models.[16]. The hybrid model, CNN+LSTM, has the
potential to improve crop yield prediction in Zambia and the
SSA region.
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The relevant studies pertaining to this area of study are
discussed in Section I, which is expanded upon in this
publication. In Section lll, the design science research
methodology (DSRM) that applies real-world experience to
this research is described, along with the methodologies
employed in the article. The evaluation techniques and
metrics utilised to determine the yield tons per hectare are
highlighted in Section IV. Finally, Section V discusses the
paper's conclusion.

II. RELATED WORKS

The current crop yield prediction in Zambia and the SSA
region has been utilising traditional mechanistic models and
data-driven models, which struggle with scalability and
adaptability, while CNN-LSTM hybrids leverage deep
learning architectures for spatial-temporal data processing,
outperforming models like Support Vector Regressors and
Decision Trees in metrics [17]. The integration of attention
layers and optimisation techniques further enhances accuracy
and robustness in dynamic agricultural environments.
Sentinel-2 imagery improves machine learning models' input
quality, with CNNs outperforming traditional methods in
spatial analysis. Additionally, climate variable integration
enhances yield estimation [18].

Several studies highlight the effectiveness of these
advanced approaches. For example, [17] developed a hybrid
model using 1D CNN, LSTM, and an attention mechanism to
predict rice and wheat yields in India, outperforming
traditional models with an RMSE 0f0.017 and an R? 0f 0.967.
Similarly, [19] developed a deep CNN-LSTM model for
predicting soybean yields at the county level in the US,
integrating remote sensing data (MODIS Land Surface
Temperature and Surface Reflectance) and weather variables,
resulting in improved prediction accuracy compared to
standalone CNN or LSTM models. In Northeast China, [20]
evaluated a CNN-LSTM-Attention model for predicting
maize, rice, and soybean yields from 2014 to 2020, showing
improved accuracy over traditional models like random forest
and XGBoost. Moreover, [21] developed a CNN-RNN
framework to predict corn and soybean yields in the U.S.
Corn Belt, achieving 9% and 8% RMSE, respectively. Lastly,
[22] developed a hybrid deep learning framework using
CNN, GAT, and LSTM modules to predict soybean yields
across 1,115 counties in 13 U.S. states from 1980-2018,
resulting in a 5% reduction in RMSE and a 6% improvement
in R? compared to existing models.

Despite substantial advancementsin crop yield prediction
through machine learning and deep learning, several
significant research gaps persist that this study aims to
address. Firstly, many existing models are region-specific,
having been developed and tested in areas such as Northeast
China and India, and thus lack validation in diverse agro-
ecological contexts [20]. This geographic bias limits the
generalizability of current models to countries like Zambia,
where climate conditions, soil types, and cropping systems
differ considerably. Furthermore, the majority of models do
not address climatic variability in Sub-Saharan Africa, despite
its crucial influence on maize yield[23]. As such, there is a
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pressing need for yield prediction frameworks adapted to
tropical environments and capable of handling spatial and
temporal variability across seasons and regions.

Secondly, while numerous studies have successfully
demonstrated the potential of hybrid deep learning
architectures such as CNN-LSTM-Attention in integrating
spatial and temporal data[24] integration of multi-source
data-including remote sensing indices, climatic variables, and
soil properties-remains underexplored in a unified
framework. Most existing models utilise either remote
sensing or climate data in isolation, resulting in limited
predictive scope [25][26]. Moreover, the interpretability of
these deep learning models remains a major concern, as they
function largely as “black boxes” with limited insight into the
agronomic factors influencing yield[27][28]. This lack of
transparency hinders adoption among farmers and
agricultural decision-makers who require actionable insights,
not just predictions.

Lastly, there is limited progress in developing models that
support real-time, in-season yield forecasting using dynamic
data streams from satellites or weather stations. Many studies
conduct retrospective analyses without extending their
models to operational or real-time use[29][30]. Additionally,
the computational complexity of deep learning models often
renders them impractical for low-resource settings, which are
common in developing countries[31]. Few studies have
optimised their models for deployment in such environments
or designed user-centric interfaces that enable farmers and
policymakers to utilise the outputs effectively. These
limitations collectively highlight the need for scalable,
interpretable, and region-specific hybrid models, such as the
CNN-LSTM framework proposed in this research, to enable
accurate maize yield forecasting in Zambia using integrated
satellite and climatic data.

The studies show that combining CNN and LSTM
architectures with climate data for accurate crop yield
prediction, along with attention mechanisms and spatial
modelling techniques, enhances their ability to capture
complex patterns.

A. Model Framework and Architecture
The model architecture uses CNN+LSTM networks to
predict maize yields accurately. It uses Sentinel-2 imagery
and climate data, extracting spatial features and modelling
temporal evolution. The model is chosen for accurate crop
yield prediction as shown in Figure 1 below:
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Figure 1: Model Architecture

The model inputs will be multi-temporal image patches
(or features) and synchronised climate vectors. The input s a
time sequence of multi-band Sentinel-2 data and associated
weather values across the growing season.

CNN Layers (Spatial Feature Extraction)

A stack of 2D convolutional layers will process the multi-
band imagery. Typical design: several conv layers ( 3X3
kernels, 32—64—128 filters) with ReLU activations, each
followed by max-pooling to reduce spatial resolution[32].
Batch normalisation may be used to speed convergence.
After the final conv layer, the output is a high-level spatial
feature map (or vector). A dropout layer (p~0.2) is inserted
before passing features to the LSTM to mitigate overfitting.

LSTM Layers (Temporal Modelling)

The sequence of feature vectors (one per time step) is
input to LSTM units. We may use one or more LSTM layers
( 64 or 128 hidden units, possibly bidirectional). These
capture the temporal evolution of the extracted spatial
features. In parallel, climate features for each time step can
be concatenated with the CNN features before the LSTM or
fed as a second input branch that merges later. This multi-
source fusion has been effective in yield prediction[33][34],
combining CNN-extracted features with climate variablesin a
Bi-LSTM to predict wheat yield, achieving R*~0.81[33].

Output Layer

The final LSTM output (at season end) feeds a fully
connected (dense) layer that produces the yield estimate. A
linear activation can be used for regression; alternatively, a
scaled tanh activation (with outputs re-scaled) may be used
if yields are normalised, as some studies have done[32]. The
network is trained to minimise the mean-squared error
between predicted and observed yield.

Rationale

This CNN+LSTM architecture is chosen because “the CNN
learns spatial features and the LSTM is used to learn the
temporal features extracted by the CNN[35]. In other words,
CNN layers will recognise spatial patterns (canopy structure,
vigour) in each image, and LSTMs will model how these
patterns change through time (reflecting phenology and
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weather effects). Such a hybrid model effectively integrates
spatiotemporal data[35][32]. Prior studies confirm its
suitability: for instance, a soybean vyield model used
CNN+LSTM to combine spectral and temporal data and
achieved a greatly reduced RMSE[35]. Architecture details
(number of layers, units) will be determined by
experimentation and computational constraints.

B.  Proposed model

The chapter presents a deep learning model for
predicting maize yield using Sentinel-2 imagery and temporal
climate variables. The model captures crop growth dynamics
across Zambia, improving agricultural vyield forecasting
precision. It uses a CNN for spatial feature extraction and an
LSTM network for temporal dependencies. Feature fusion is
employed for joint learning as shown in Figure 2 below.
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Figure 2: Proposed model

This study presents a deep learning model for maize yield
prediction in Zambia, utilising multitemporal Sentinel-2
imagery and climate data. The model uses CNN to extract
spatial features from satellite imagery, while LSTM learns
long-term temporal relationships between climatic
conditions and maize yield. The model uses feature fusion
and fully connected layers to improve performance by
integrating spatial-spectral information with climate trends.
The output layer generates a continuous value representing
predicted maize yield in tons per hectare, which can be
aggregated and visualised at the district level for food
security planning and early warning systems. The model's
accuracy is assessed using metrics Root Mean Square
Error(RMSE), Mean Absolute Error(MAE), and coefficient of
determination(R?).

III. RESEARCH DESIGN AND APPROACH
The research aims to create a predictive framework for
maize yield in Zambia using the Design Science Research
Methodology (DSRM). The model, a hybrid deep learning
model, uses Sentinel-2 satellite imagery and climate data to
enhance forecasting accuracy and reliability.

A. Methodological framework
The aim is to develop a CNN-LSTM architecture,
combining Sentinel-2 satellite imagery and climatic variables,
to predict maize yield at the district level in Zambia. The
model extracts spatial features from Sentinel-2 imagery and
captures temporal patterns in climate time series data. The
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model will be tested on real-world datasets and evaluated
using metrics RMSE, MAE, and (R?)[36][37]. The findings are
then disseminated through academic publications and
stakeholders in agriculture, emphasising the implications for
precision farming and food security strategies.

B. Data Collection and Sources

The proposed methodological framework for predicting
maize yield involves data integration, preprocessing, feature
engineering, construction, training, optimisation, and
evaluation. It begins with data alignment, preprocessing,
feature engineering, and hybrid architecture design. The
model is trained on historical data, optimised, and evaluated
for accuracy using RMSE, R%, and MAE metrics. The model
architecture combines spatial and temporal information,
with convolutional layers extracting spatial patterns and
LSTM layers modelling temporal evolution. The final output
layer produces a continuous yield estimate. The model is
trained on historical data, with regular monitoring and
evaluation using regression metrics. The study uses Sentinel-
2 satellite imagery, climate data, and ground truth data to
predict maize vyield with key spectral bands at 10m
resolution, employing climate data sourced from reliable
providers CHIRPS and ERAS5, as shown in Table 1 below.

Table 1: Spatial and Temporal Data Sources for Maize Yield
Prediction

Data Source Resoluti | Key Usage
Type on /| Variables
Frequen | / Bands
cy
Spatial | Copernic | 10 m | Blue, Covers
Data us Open | (B2, B3, | Green, maize
(Sentin | Access B4, B8), | Red, NIR, | season
el-2 Hub, 20 m | Red-edge, | (Nov—
Imager | Google (B5-B7, | SWIR; Apr);
y) Earth Bl11, NDVI, used for
Engine B12) red-edge spatial
resample | indices crop
dto 10 m monitori
ng;
Tempor | CHIRPS, | CHIRPS | Precipitati | Aligned
al Data | ERAS : ~5 km; | on, with
(Climat ERAS: temperatu | imagery
e) 0.25° re dates,
(~28 (min/max) | downscal
km); , radiation, | ed to
daily or | humidity | Sentinel-
dekadal 2 grid
summari
es
Ground | Zambia Region- | Observed | Usedasa
Truth Ministry | level or | maize model
Yield of aggregat | yield target
Data Agricultu | ed (t/ha) variable,
re, national spatially
FAOSTA | statistics
T and
FRA
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The Sentinel-2 Imagery will use MultiSpectral Instrument
data from the Copernicus Open Access Hub or Google Earth
Engine to cover the maize growing season from November to
April. The data will be preprocessed using a cloud and cirrus
mask, atmospheric correction, spatial co-registration, and
vegetation indices. Climate data will be acquired using
CHIRPS and ERAS reanalysis, with climate time series for the
same dates as the imagery. This data will be used to improve
maize yield forecasts, highlighting the importance of weather
data in remote sensing.

IV. MODELLING FRAMEWORK

The proposed framework aims to accurately predict
maize yield by combining multi-temporal Sentinel-2 imagery
of each maize field with climate time-series (rainfall,
temperature, and humidity) as inputs. This approach is
motivated by prior findings that deep models extract rich
representations from high-dimensional data and often
surpass conventional machine learning methods in yield
forecasting accuracy. The model comprises an encoder-
decoder architecture, where each Sentinel-2 image is input
into the CNN block, which applies convolution and pooling
operations to extract high-level spatial features. The
sequence of CNN feature vectors is fed into an LSTM layer to
capture temporal dependencies, and climate inputs (rainfall,
temperature, humidity) are integrated by concatenation with
the CNN features before the LSTM or via a parallel branch
merged in a fusion layer. The LSTM's output is then passed
through one or more dense layers to produce the final yield
estimate. The theoretical underpinnings of this approach are
that CNNs are well-suited to processing spatial image data,
while LSTMs are designed for sequential data. Hybrid CNN-
LSTM models leverage both strengths, improving predictive
power in crop yield modelling.

A.  Components of the Framework

The CNN-LSTM model is a hybrid approach that uses
convolutional layers, batch normalisation, ReLU activation,
and Max Pooling layers to predict maize yield. It processes
temporal sequences, leveraging memory capabilities and
incorporates climate data fusion. The output layer produces
yield predictions, with a loss function for accurate numerical
estimation. The model is trained to minimise a regression
loss, typically MSE, between predicted and observed yields.
The model is optimised using stochastic gradient descent
with an adaptive optimiser (Adam). The research introduces
innovative crop vyield prediction techniques, combining
Sentinel-2 imagery with local climate time series for small-
scale maize prediction in Zambia. The hybrid CNN-LSTM
architecture is tailored for field-level resolution and climate
seasonality, addressing gaps in existing remote sensing for
smallholder farmers in SSA. The approach leverages the
synergy of satellite and climatic inputs to improve yield
accuracy, making it an innovation in this context. As shownin
Figure 3, the components of the framework are used.
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Figure 3: Components of the framework

B.  Assumptions and constraints

The proposed methodology assumes cloud-free Sentinel-
2 data during the maize growing season, accurate field
delineation, data quality from historical yield records and
climate data, crop consistency, significant computational
resources for training, and transferability. It also assumes
sufficient clear-sky images, accurate delineation of individual
fields, accurate historical yield labels and climate records,
uniform agronomic practices within the study region, and
access to suitable GPUs or compute clusters. The model is
assumed to generalise to future seasons, despite potential
limitations due to climate or farming practices changes.

C. Evaluation methods and metrics

The proposed model will be evaluated using regression
metrics and visual diagnostics, including R%, RMSE and
MAE. Cross-validation, statistical significance assessment,
and visual evaluations will be employed to ensure robustness
and validity. Benchmarking against simpler models will
demonstrate the added value of the CNN-LSTM approach, as
shown in Figure 3 below:

[ Model Evaluation

| ]

Regression Visual Statistical
Metrics Diagnostics Testing
Cross- iti -

Valid_ati_om ‘ Aa‘;':r'g;a' ] Benchmaﬂung]

Figure 4: Model Evaluation

Primary Metrics: Model accuracy will be assessed using
regression metrics. The Coefficient of Determination (R?)
indicates the proportion of variance explained, and the Root
Mean Squared Error (RMSE) measures average prediction
error magnitude[32]. We will also compute Mean Absolute
Error (MAE) to complement RMSE[38]. Lower RMSE/MAE
and higher R? indicate a better fit.

The metrics formulas to be used are:

Coefficient of Determination (R?)

Where:
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R?=1—

(D

SEtot
* SS_res = Residual Sum of Squares = Z(yi - §i)?
* SS_tot = Total Sum of Squares = X(yi - ¥)?
* yi = Actual observed value
* i = Predicted value by the model
* ¥ = Mean of actual observed values
* n = Number of observations
Table 2: Interpretation of R?
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R? Interpretation

Value

1.0 Perfect prediction — all data points fall exactly
on the regression line

0.9 —| Excellent fit — model explains most of the

1.0 variance

0.5 — | Moderate fit — model explains some variance,

0.9 but there's room for improvement

0.0 — | Poor fit — model explains little of the variance

0.5

<0.0 Worse than a horizontal mean-line predictor —
model introduces error

RMSE Formula

This is a commonly used metric in crop yield prediction for
measuring the accuracy of a predictive model. It computes
the square root of the average of the squared differences
between observed and predicted values.

RMSE = J%E‘;‘zl{yf—jh}z (2)

Where:
n = Number of observations (fields, districts, or periods)
yi = Actual observed maize yield (in tons per hectare)
Vi = Predicted maize yield from the model
(vi - §1)* = Squared difference between observed and predicted
yields
Relevance in Maize Yield Prediction
Captures prediction accuracy and penalises large errors more
heavily.
Results are interpretable in the same units as the output
variable (tons/ha).
Facilitates comparison of various machine learning models,
including CNN-LSTM, Random Forest, etc.
MAE Formula
The Mean Absolute Error (MAE) is a fundamental evaluation
metric used in machine learning and crop yield prediction. It
measures the average magnitude of the errors in a set of
predictions, without considering their direction.

n
1 .
MAE = = lp— Bl (3)
i=1

Where:

. n = Total number of observations (fields, districts, or time

periods)

[2]. yvi = Actual observed maize yield (in tons per hectare)
[3]. §i = Predicted maize yield from the model
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[4]. lyi - §i| = Absolute error between observed and predicted

yields
Relevance in Corn Yield Prediction
e Easy to interpret since it uses the same unit as the
predicted variable (tons/ha).
e Less sensitive to large errors or outliers compared to
RMSE.
e Complements RMSE by providing an additional
perspective on model performance.
Cross-Validation Statistics - When using k-fold CV, report
the mean and standard deviation of metrics across folds. For
example, [39] computed R?> and RMSE along with their
standard deviations from repeated 10-fold cross-
validation[40]. This quantifies confidence in the results.
Statistical Testing: If comparing two models, paired tests
(paired t-test) on error metrics will check if differences are
statistically significant.
Visual Diagnostics - Scatter plots of predicted vs. observed
yield (with 1:1 line) will be used to visually assess
performance. Residual plots (error vs. predicted) and maps of
spatial error distribution will help identify systematic biases.
Feature importance (via ablation or SHAP analysis) can
reveal which inputs most influence predictions.
Benchmarking - Performance will be compared against
simpler approaches. For instance, a multiple linear regression
on NDVI and climate features or a Random Forest model will
be trained as a benchmark. Demonstrating that CNN-LSTM
outperforms these will justify its complexity.

V. CONCLUSION
This research proposes a novel deep learning framework
that integrates Sentinel-2 satellite imagery and climate data
using a hybrid CNN-LSTM model to predict maize yield in
Zambia. The approach addresses limitations of traditional
yield estimation methods by capturing both spatial and
temporal patterns critical to crop development. The model
leverages multispectral imagery and climatic variables to
enable accurate, timely, and location-specific predictions that
can inform early warning systems, agricultural planning, and
food security interventions. By incorporating modern Al
techniques into agricultural decision-making, the study
contributes to precision agriculture, enhances climate
resilience, and supports national efforts in achieving
sustainable food systems.
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