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ABSTRACT 

Timely and effective response to disease 

outbreaks remains a persistent challenge, 

especially in resource-constrained 

environments such as Zambia. This study 

presents the development of a GIS-based 

mobile application that combines Geographic 

Information Systems (GIS) with artificial 

intelligence (AI) to enhance real-time outbreak 

monitoring and decision-making. The system 

integrates geospatial visualization with AI-

driven analytics to identify potential hotspots, 

predict disease propagation trends, and 

generate actionable recommendations for 

public health stakeholders. Built using a full-

stack architecture, the application leverages 

Flutter for the frontend, Firebase for backend 

services and cloud database, and the DeepSeek 

& Gemini API for AI-powered qualitative 

insights. While existing solutions in countries 

like India and China have shown the potential 

of merging AI with geospatial analysis for 

epidemic tracking and agricultural pest 

management [1], such integration is limited in 

Zambia’s public health landscape. This 

research addresses that gap through a 

scalable, mobile-centric solution designed 

specifically for localized deployment. A 

qualitative evaluation of the prototype 

indicates strong potential for improving 

epidemiological surveillance and informing 

data-driven interventions in Zambia and 

similar low-income settings. 

Keywords: GIS, disease mapping, outbreak, 

AI, public health, ICT, mobile application 

INTRODUCTION 

The increasing frequency and rapid spread of 
infectious diseases, including emerging zoonotic 

pathogens, has heightened the demand for 

advanced epidemiological surveillance tools. In 

many resource-constrained settings like Zambia, 

traditional disease surveillance methods are 

hindered by delayed data reporting, fragmented 

systems, and lack of spatial intelligence, thereby 

impeding timely public health interventions. 

Geographic Information Systems (GIS) have long 

been recognized for their role in mapping and 

visualizing disease dynamics. When combined 
with Artificial Intelligence (AI), these 

technologies offer powerful capabilities such as 

hotspot detection, real-time forecasting, and 

automated response recommendations [2]. 

Globally, real-time GIS-AI integration has been 

implemented in various forms—for instance, 

during the COVID-19 pandemic in Asia, where 

AI-powered dashboards enabled regional 

governments to reduce outbreak response times 

by over 30% through predictive analytics and 

automated alerts [3]. 

In the African context, particularly Zambia, the 

implementation of digital outbreak management 

platforms is still in its infancy. Previous local 

studies have highlighted the viability of AI-based 
monitoring systems for non-health applications 

such as locust detection, where lightweight AI 

models like MobileNet V2 were deployed for 

accurate identification in rural zones [4]. These 

findings underscore the feasibility of adapting 

similar approaches to disease surveillance 

through mobile-first GIS systems. 

Moreover, researchers in Zambia have proposed 

scalable digital solutions for health centers that 

integrate data mining and reporting capabilities, 

emphasizing the need for structured health data 

workflows that operate efficiently in 

environments with low computational resources 

[5]. The current study builds upon these 

foundations by developing and evaluating a full-
stack GIS-based mobile application that unifies 

geospatial mapping, real-time data ingestion, and 

AI-assisted analytics tailored for infectious 

disease outbreaks. 

The primary objective of this research is to design 

an intuitive, scalable, and mobile-optimized 
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platform for disease mapping that is applicable to 

the Zambian healthcare context. This tool aims to 

empower health professionals with timely 

insights to inform decisions, allocate resources, 

and anticipate future disease spread based on 

structured, location-specific data. 

LITERATURE REVIEW 

The integration of Geographic Information 

Systems (GIS) into public health surveillance has 

been instrumental in understanding disease 

dynamics across space and time. GIS enables 

researchers and policymakers to correlate disease 

spread with geospatial variables such as 

population density, environmental factors, and 

transportation networks. It has been extensively 
applied in the management of cholera, malaria, 

and influenza to visualize outbreak clusters and 

guide intervention strategies [6]. 

Despite its proven utility, traditional GIS 

platforms often operate in isolation from real-

time data sources and predictive analytics. 

Systems like District Health Information 

Software 2 (DHIS2), widely adopted across 

Africa, including Zambia, support national-level 

data collection but lack real-time integration, 

spatial analytics, and AI-assisted forecasting [7]. 

This presents a technological limitation in 

environments where rapid public health 

responses are critical. 

The application of Artificial Intelligence (AI) in 

public health surveillance is increasingly 

recognized as a transformative force. AI 

techniques such as machine learning, deep 

learning, and natural language processing (NLP) 
have enabled early outbreak detection, anomaly 

detection in case trends, and automated data 

interpretation [8]. For instance, AI-enabled 

surveillance platforms deployed during the 

COVID-19 pandemic demonstrated the value of 

hybrid models that fuse AI with GIS data to 

improve prediction accuracy and visualize high-

risk zones [9]. 

In the Zambian context, early work by Halubanza 

et al. [10] successfully implemented lightweight 

AI models (MobileNet V2) for locust detection, 

proving the feasibility of deploying on-device AI 

for real-time monitoring in remote areas with 

limited connectivity. Although not designed for 

human disease, this work offers a technological 
template for spatially distributed outbreak 

monitoring. 

Additionally, Kebede and Alemayehu [11] 

documented the use of mobile GIS platforms 

integrated with AI to support disease surveillance 

in rural Ethiopia, revealing similar infrastructure 

and resource constraints. Their model highlighted 
the importance of optimizing user interfaces for 

non-technical health personnel and emphasized 

the need for low-latency AI systems. 

Collectively, the literature points to the increasing 
convergence of GIS, mobile technology, and AI 

as a critical next step in health informatics. 

However, there remains a scarcity of fully 

integrated platforms tailored for low-resource 

countries that unify real-time data capture, 

geospatial visualization, and AI-powered 

forecasting in one system. This study aims to 

address that gap by developing and evaluating a 

scalable, cloud-based GIS-AI application 

specifically designed for outbreak detection and 

intervention in Zambia. 

RESEARCH METHODOLOGY 

This research employed an Agile development 

methodology, enabling iterative design, 

implementation, and testing of a GIS-based 

mobile application for disease outbreak 

surveillance. Agile was chosen due to its 

flexibility and emphasis on user feedback, which 

is critical for health applications intended for field 

deployment in dynamic environments. 

The project was executed over a series of 

structured development sprints, each focused on 

a specific functional component: data ingestion, 

geospatial visualization, AI integration, and 

dashboard analytics. Prior to development, the 
system architecture was modeled using Unified 

Modeling Language (UML) tools including an 

Entity-Relationship Diagram (ERD), a Class 

Diagram, and an Activity Diagram to capture 

system behavior and component interactions. 

The technology stack was selected to balance 

performance, scalability, and mobile 

accessibility: 

• Frontend: Developed using Flutter, an 

open-source mobile SDK, allowing for high-

performance cross-platform deployment on both 

Android and iOS. Its widget-based architecture 

supported the creation of an intuitive and 

responsive user interface. 

• Backend and Database: Built on 

Firebase, offering real-time cloud-based data 



Seventh International Conference in Information and Communication Technologies, 

Lusaka, Zambia 15th to 16th October 2025 

 

 

286 | P a g e  ISBN: 978-9982-95-500-3 ICICT2025 

storage via Firestore, robust user authentication, 

and seamless integration with third-party APIs. 

Firebase was selected for its efficiency in mobile-

first architectures and proven use in low-latency 

data environments [12]. 

• AI Integration: The system interfaces 

with the DeepSeek & Gemini API, a third-party 

service providing AI-generated qualitative 

analysis. This module receives structured disease 
case data and returns predictive insights and 

policy recommendations, which are rendered on 

the application’s dashboard. 

Similar cloud-based architectures have been 
adopted in other AI-health systems, such as those 

described by Jiang et al. [13], who emphasized 

the advantages of modular design for deploying 

AI in resource-constrained health systems. 

While the prototype currently relies on an 

external AI API, efforts are underway to localize 

the AI component. This approach aligns with 

strategies implemented in Zambia for agricultural 

surveillance systems, where lightweight 

convolutional neural networks have been 

successfully trained and deployed on mobile 

devices for real-time monitoring [14]. 

A qualitative testing phase was conducted to 

evaluate the performance, usability, and 

responsiveness of each module. Feedback from 

simulated end-users (health professionals and 

data managers) guided interface adjustments and 

backend optimizations to ensure the system was 

suitable for deployment in Zambia’s 

decentralized healthcare infrastructure. 

A. Analysis and Design 

The design architecture of the GIS-based disease 

outbreak monitoring application is structured 

around three primary functional layers: data 
ingestion, geospatial visualization, and AI-

powered qualitative analysis. Each layer is 

developed to support modular interaction while 

maintaining system responsiveness, scalability, 

and ease of use for non-technical public health 

personnel. 

A. Data Ingestion Module 

The system features a secure, form-based data 

ingestion interface allowing for both manual 

entry and bulk uploading of CSV files. The input 

schema includes parameters such as patient ID 

(anonymized), date of diagnosis, location 

coordinates, age group, disease type, and severity. 

Real-time input validation is performed client-

side using Flutter’s form validation libraries to 

ensure data consistency before storage in 

Firestore. 

The ingestion module is designed to operate 

under low-bandwidth conditions and is optimized 

for offline-first behavior using Firebase’s local 
caching capabilities. This functionality is aligned 

with real-world deployments in rural 

environments, where intermittent connectivity 

can limit continuous cloud access [15]. 

   

Fig. 1. Bulk CSV Upload Interface for Disease 

Data Entry. 

Fig.1 screen from the mobile application displays 

the “Data Upload” module, allowing users to 

upload structured outbreak data in .csv format. 

The interface offers two input modes: Bulk CSV 

Upload and Single Case Entry. The upload area is 

designed with clear prompts for health workers to 

drag-and-drop or click to import files, 

streamlining batch data ingestion for field 

deployments in low-resource settings. 
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Fig. 2. Preview of Uploaded Disease Case 

Records from CSV File. 

After a bulk upload, the system displays a table 

preview of the first few entries parsed from the 

CSV file. Each record includes a unique caseId 

and the associated disease type, such as Malaria, 

Cholera, Typhoid, and Influenza. Fig 2. preview 

allows the user to verify data accuracy before 
submission, enhancing transparency and 

preventing errors in outbreak case ingestion. 

 

Fig. 3. Single Case Entry Interface for Manual 

Disease Reporting. 

Fig. 3. interface enables health professionals to 

enter outbreak case data manually when CSV 

upload is not feasible. The form includes fields 

for disease type, location hierarchy (province, 

district, ward), facility name, severity level, 
population density, and demographic indicators 

such as age and response time. Dropdown menus 

ensure standardized data input, supporting 

accurate real-time reporting in the field. 

B. Geospatial Visualization Layer 

A central component of the platform is the 

interactive map interface, built using Google 

Maps SDK for Flutter. Disease cases are plotted 
dynamically using location coordinates, with 

clustering logic implemented to minimize visual 

clutter and enhance spatial pattern interpretation. 

Clusters are rendered based on case density 

within proximity thresholds, and each cluster 

displays metadata such as dominant disease type 

and average case severity. Visual enhancements 

like ringed severity indicators and zoom-level 

dependent granularity are incorporated to 

facilitate multiscale analysis by public health 

officers. 

The design of this layer draws from global best 

practices used in pandemic visualization 

dashboards, such as those developed during the 
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COVID-19 outbreak [16]. These systems proved 

the importance of responsive spatial interfaces 

that allow users to detect emergent clusters and 

explore regional case variation. 

 

 

Fig. 4. Interactive Outbreak Map Displaying 

Regional Disease Clusters. 

Fig.4 geospatial interface displays real-time 

outbreak clusters across different provinces in 

Zambia, including Lusaka, Central, Copperbelt, 

and Southern Provinces. Circle markers indicate 

the number of reported cases per region, with 

cluster severity color-coded (e.g., green for low, 

red for high). Users can zoom in to view local-

level detail or tap clusters to access specific case 

information, supporting spatial analysis and 

hotspot identification. 

  

 

Fig. 5. Interactive Cluster Popup Showing 

Typhoid Case Summary. 

Fig. 5 zoomed-in view of the outbreak map 

reveals a dynamic popup triggered by tapping a 

disease cluster. The popup displays metadata 

including disease type (Typhoid), severity level 

(Low), total case count, and first/last reporting 

dates. This feature enhances user interactivity and 

provides rapid situational awareness, enabling 

health professionals to assess local outbreak 

status at a glance. 

C. AI-Powered Analysis Engine 

Structured disease data is transmitted securely to 

the DeepSeek & Gemini API, which returns a 

narrative analysis including outbreak trends, 

potential correlations (e.g., with weather or 

location), and suggested health interventions. 

This analysis is parsed and displayed in the user 
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dashboard using Flutter’s widget tree for real-

time user interface updates. 

While this current version depends on an external 

AI API, the long-term design objective is to 

replace this component with a locally trained AI 

model, enabling improved interpretability, 

reduced latency, and offline functionality. This 

mirrors recent Zambian AI deployments in 

agriculture, where locally trained CNN models 

were effectively embedded in edge devices [17]. 

Together, these components form a cohesive and 

extensible system designed not only to visualize 

disease spread but to support predictive health 
analytics and proactive intervention planning in 

Zambia’s public health infrastructure. 

 

 

Fig. 6. Risk Assessment Dashboard Displaying 

AI-Derived Disease Trends. 

Fig. 6 interface provides real-time trend insights 

on diseases such as malaria, typhoid, and cholera. 

Each entry summarizes the change rate in 

reported cases, geographic concentration, and 

associated environmental risk factors (e.g., 

mosquito breeding, contaminated water, 

sanitation). This module uses AI analytics to 

surface early warning indicators and prioritize 

public health responses by region and disease 

type. 

 

Fig. 7. Priority Action Panel Suggesting AI-

Driven Public Health Interventions. 

Fig. 7 interface presents recommended 

interventions based on risk assessment insights, 

prioritized by urgency and deadline. For example, 

the system suggests intensifying cholera 

surveillance and improving sanitation, with 

responsible agencies clearly indicated. Action 

urgency tags (e.g., CRITICAL, HIGH) help 

health authorities allocate resources and 

coordinate response efforts effectively. 
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Fig. 8. Predictive Risk Assessment of Cholera and 

Typhoid by Region. 

In Fig. 8, the system uses AI to forecast regions 

with high outbreak risk based on environmental 

and demographic factors. Lusaka is flagged as a 

high-risk zone for cholera due to high population 

density, poor sanitation, and contaminated water 
sources. Similarly, the Southern region is 

predicted at high risk for typhoid. Color-coded 

bars and contextual tags allow for intuitive 

interpretation by decision-makers. 

 

 RESULTS 

The prototype of the GIS-based disease outbreak 

application was successfully developed and 

tested in a controlled environment simulating 

real-world conditions in Zambia’s public health 

context. The system demonstrates integrated 

functionality across its three core modules: 

interactive mapping, dashboard analytics, and AI-

powered insights. 

A. Interactive Mapping 

The geospatial interface accurately maps disease 

case data onto an interactive Google Map layer. 

Each case is plotted based on user-input 

coordinates, with real-time rendering of clustered 

outbreak zones. Clustering adjusts dynamically 

based on zoom level, ensuring clarity whether 

viewing national-scale trends or localized 

hotspots. Users can tap on clusters to retrieve case 
metadata, including dominant disease, number of 

cases, and location-specific severity statistics. 

This functionality parallels global systems used 

during the COVID-19 pandemic to visualize 
outbreak trajectories [18], confirming the 

viability of such tools in enhancing situational 

awareness among public health officials. 

B. Dashboard Analytics 

The dashboard module aggregates disease data 

into meaningful summaries using bar charts, pie 

charts, and time-series plots. Key indicators 

include: 

• Total case counts by disease type 

• Demographic breakdowns by age and 

gender 

• Weekly and monthly trend curves 

• Spatial distribution heatmaps 

The dashboard was designed for quick 

interpretation, even by non-technical users, and is 
responsive across both desktop and mobile 

platforms. The visual style adheres to data 

visualization principles established in previous 

mobile GIS implementations for disease 

management in East Africa [19]. 

C. AI-Powered Insights 

The AI module successfully processed structured 

data submitted through the dashboard and 
returned actionable insights. Sample outputs 

included: 

• Identification of emerging hotspots 

based on multi-case clusters 

• Hypothesized correlations between 

rainfall data and outbreak spikes 

• Recommendations for increased health 

messaging in densely affected areas 
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These outputs are displayed in a structured 

narrative format on the dashboard, enhancing 

decision-making capabilities for field officers and 

health planners. This approach reflects successful 

implementations in digital agriculture and pest 
monitoring, where localized AI-driven 

recommendations improved both timeliness and 

relevance of interventions [20]. 

Collectively, the system offers a scalable and 
adaptable architecture that not only supports 

spatial awareness but also embeds intelligence 

directly into field-level workflows, paving the 

way for data-informed disease response strategies 

in Zambia. 

CRITICAL EVALUATION 

The development and testing of the GIS-based 

outbreak monitoring system yielded several 

important insights into the technical and 
operational challenges of deploying intelligent 

health surveillance platforms in low-resource 

environments. 

The use of modern mobile development 
frameworks (Flutter and Firebase) enabled rapid 

prototyping and scalability, while the integration 

of AI-driven analytics through the DeepSeek & 

Gemini API added substantial decision support 

value. The application demonstrated strong 

functionality in offline-tolerant data collection, 

multi-scale geospatial visualization, and real-time 

feedback, all of which are essential features for 

health workers operating in decentralized or rural 

settings. 

Furthermore, the clustering logic and severity 

mapping techniques incorporated into the 

visualization layer enabled meaningful detection 

of outbreak patterns across different geographic 

scales. This aligns with geospatial visualization 
standards in digital epidemiology platforms used 

in COVID-19 dashboards globally [21]. 

CONCLUSION 

This research successfully developed and 

evaluated a GIS-based mobile application 

designed to enhance disease outbreak 

surveillance in Zambia through the integration of 

geospatial mapping and AI-powered analytics. 

By leveraging open-source technologies such as 

Flutter and Firebase, alongside a third-party AI 
service, the prototype demonstrated core 

capabilities including real-time case mapping, 

dynamic clustering, and automated insight 

generation. 

The application’s functionality aligns with global 

digital health standards, yet it is tailored 

specifically to the infrastructural and 

epidemiological realities of Zambia. Its mobile-

first design and offline tolerance make it 

particularly suitable for deployment in rural and 

underserved areas where conventional health 
information systems often fail to provide timely 

data. 

Unlike traditional systems like DHIS2, which 

emphasize historical reporting and aggregated 
analysis, this platform introduces spatial 

intelligence and predictive modeling at the point 

of data entry. This supports a shift from reactive 

to proactive public health interventions, allowing 

stakeholders to identify outbreak patterns, 

anticipate escalation, and allocate resources 

accordingly. 

The qualitative evaluation of the system, 

informed by simulated user testing, confirms its 

usability and relevance. However, limitations 

such as external AI dependency and lack of 

locally trained models underscore the need for 

continued development[22],[23]. Ultimately, the 

system offers a scalable framework for 

integrating AI and GIS in public health, a model 
that can be extended to other low-income 

countries with similar healthcare and 

infrastructural challenges. Prior successes in 

Zambia’s digital agriculture domain provide a 

strong foundation for this transition, where 

mobile-based AI tools have already demonstrated 

tangible impact in early warning and resource 

coordination efforts [24]. 
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