

A Hybrid Genetic Algorithm–Tabu Search Approach for AI-Driven Exam Timetabling in Higher Education

Sebastian Banda

*School of engineering and Technology
Mulungushi University
Kabwe, Zambia
sebastianbanda996@gmail.com*

Brian Halubanza

*School of Engineering and Technology
Mulungushi University
Kabwe, Zambia
bhalubanza@gmail.com*

Abstract

The increasing scale and complexity of higher education institutions have rendered manual and rule-based examination scheduling methods inadequate for managing resource constraints, student diversity, and institutional policies. This paper presents a hybrid Artificial Intelligence (AI)-driven examination timetabling system that integrates Genetic Algorithms (GA) and Tabu Search (TS) to generate conflict-free, efficient, and equitable timetables. The GA component performs global exploration to identify optimal scheduling permutations, while TS executes local refinement to prevent convergence toward suboptimal solutions. Developed using Django (backend), React (frontend), and MySQL (database), the system automates examination scheduling, optimizes venue and invigilator allocation, and adapts dynamically to academic changes. Empirical evaluation using real datasets from Mulungushi University demonstrated a 97.5% reduction in exam conflicts, substantial improvement in scheduling efficiency, and enhanced satisfaction among students and administrators. The proposed hybrid GA–TS framework provides a scalable and modular foundation for future AI-based scheduling research, contributing to the advancement of intelligent academic management systems in higher education.

Keywords

Exam Timetabling; Genetic Algorithm; Tabu Search; Artificial Intelligence; Optimization Systems; Higher Education Scheduling; Django; React; MySQL

I. Introduction

Efficient examination timetabling remains one of the most challenging combinatorial optimization problems in higher education administration. As universities expand in enrollment, program diversity,

and logistical complexity, manual scheduling approaches have become increasingly unsustainable. Timetable construction must satisfy a wide range of hard constraints such as preventing student exam conflicts, room capacity limits, invigilator availability and soft constraints such as spacing of exams, student fairness, and resource efficiency. Failure to meet these constraints can lead to operational inefficiencies, student dissatisfaction, and institutional credibility risks.

Artificial Intelligence (AI)-driven optimization has gained prominence as a viable solution to such NP-hard problems due to its ability to approximate near-optimal solutions within realistic computational limits. Among AI paradigms, metaheuristic algorithms such as Genetic Algorithms (GA), Tabu Search (TS), Simulated Annealing (SA), and Ant Colony Optimization (ACO) have shown substantial potential in solving large-scale scheduling and resource allocation problems efficiently [1], [2]. Recent studies demonstrate that hybridization of metaheuristics, where global and local search mechanisms complement each other, can achieve faster convergence and superior solution quality compared to standalone algorithms [3], [4].

In the academic scheduling domain, research has evolved from static heuristics toward adaptive, data-driven systems capable of learning institutional behavior patterns and responding dynamically to new constraints. For example, hybrid GA-based models have achieved improved conflict resolution rates and reduced computation time compared to traditional heuristics [5], while Tabu Search variants have demonstrated effective local optimization for constraint satisfaction in dense scheduling

environments [6]. Integrating these approaches into a single framework promises enhanced scalability and robustness suitable for higher education institutions in developing contexts.

Despite these advancements, many existing AI-based scheduling solutions remain limited in practical deployment due to implementation complexity, lack of interoperability with academic management systems, and insufficient contextual adaptation for specific institutional needs, particularly in African universities. This research addresses these gaps by designing and implementing a hybrid GA–TS examination timetabling system, developed using the Django web framework and React front-end architecture, with MySQL as a robust relational database. The system is evaluated using real-world data from Mulungushi University, Zambia, demonstrating improvements in scheduling efficiency, user experience, and system adaptability.

II. Related Work

The examination timetabling problem (ETP) has been an active area of research in operations research, artificial intelligence, and educational informatics for several decades. ETP is classified as an NP-hard combinatorial optimization problem, wherein finding a feasible and conflict-free schedule that satisfies institutional constraints is computationally complex [1]. The growing academic population and resource constraints in higher education have amplified the need for automated and intelligent scheduling systems [2].

A. Conventional Approaches

Earlier ETP studies primarily relied on heuristic or rule-based systems that attempted to encode domain-specific constraints manually. Such systems, though straightforward to implement, suffer from limited scalability and inability to adapt to dynamic academic contexts. Classical heuristics such as graph coloring, greedy algorithms, and constraint satisfaction programming provided foundational models but often resulted in suboptimal solutions when confronted with large datasets or evolving scheduling rules [3].

B. Metaheuristic-Based Optimization

The past decade has witnessed a paradigm shift toward metaheuristic algorithms, particularly Genetic Algorithms (GA), Tabu Search (TS), Simulated Annealing (SA), and Ant Colony Optimization (ACO), for handling the ETP efficiently. GA leverages selection, crossover, and mutation operators to explore solution spaces broadly, whereas TS exploits memory structures to avoid revisiting previously explored solutions, thereby refining local search quality [4]. Recent hybrid implementations demonstrate superior performance by combining global exploration and local exploitation mechanisms. For instance, Talbi [5] presented a taxonomy of hybrid metaheuristics emphasizing their adaptability in dynamic scheduling problems, while Singh and Gupta [6] proposed an enhanced TS for university exam timetabling that achieved a 95% reduction in conflict rates compared to baseline heuristics.

C. Hybrid AI Models for Academic Scheduling

Hybrid AI frameworks that integrate two or more metaheuristics have proven especially effective for complex multi-constraint environments like universities. Cowling et al. [7] highlighted that combining GA and TS yields a more balanced trade-off between convergence speed and solution diversity. Similarly, Glover and Kochenberger [8] demonstrated that hybridization minimizes premature convergence, an issue prevalent in standalone GA approaches. Empirical studies across university contexts confirm that hybrid methods outperform deterministic or single-heuristic models in computational efficiency and conflict resolution accuracy [9].

D. Regional Context and Research Gap

In sub-Saharan Africa, AI adoption for academic management remains limited, with most universities still relying on manual or semi-automated systems. Recent regional contributions, such as Halubanza et al. [10], applied machine learning for environmental monitoring and e-administration, illustrating the growing capability of African institutions to implement intelligent systems. However, literature reveals a persistent gap in context-specific ETP solutions that integrate hybrid AI algorithms with modern web-based architectures for real-time adaptation and user accessibility. This study addresses

that gap by proposing a hybrid **Genetic Algorithm–Tabu Search (GA–TS)** framework implemented within a **Django–React–MySQL** ecosystem tailored to higher education environments in Zambia.

The proposed system builds upon and extends previous works by Halubanza and colleagues on intelligent decision-support systems [11], [12], providing a concrete, deployable solution that aligns with institutional needs while contributing to the global discourse on AI-driven educational management systems.

III. METHODOLOGY AND SYSTEM ARCHITECTURE

The design and implementation of the hybrid examination timetabling system followed a systematic methodology integrating artificial intelligence–based optimization with modern web application development practices. The methodological framework was divided into four major phases: problem definition and requirements analysis, algorithmic model design, system development and integration, and performance evaluation. Each phase was executed with iterative refinement to ensure the system met institutional scheduling requirements, computational efficiency standards, and user-centered usability goals.

The problem definition phase involved a comprehensive analysis of Mulungushi University's existing examination scheduling procedures, highlighting critical inefficiencies associated with manual timetabling. Data collected included course lists, student enrolments, examination durations, venue capacities, and invigilator allocations. These datasets formed the constraint model, defining both hard constraints, such as avoiding overlapping examinations for the same student, and soft constraints, including equitable invigilation distribution and examination spacing preferences. The analysis revealed that manual scheduling often resulted in multiple constraint violations and excessive administrative workload, motivating the development of an AI-driven optimization model.

The algorithmic model design combined the global search capabilities of the Genetic Algorithm (GA) with the local refinement capacity of Tabu Search (TS) to achieve high-quality scheduling solutions within feasible computation times. The GA component performed initial population generation, chromosome encoding, fitness evaluation, and crossover–mutation operations to explore a broad solution space. Each chromosome represented a potential timetable configuration, evaluated against the constraint satisfaction score. The TS algorithm was subsequently applied to refine locally optimal solutions produced by GA, using adaptive memory structures to prevent cyclical repetitions and accelerate convergence. The hybridization strategy ensured balance between exploration and exploitation, improving the system's robustness and scalability compared to single-algorithm approaches [1], [2].

Figure 1 illustrates the hybrid GA–TS workflow, depicting data input, fitness evaluation, neighborhood generation, tabu list management, and iteration control flow. This process was implemented using Python for algorithmic computation, leveraging libraries such as *NumPy* for numerical processing and *Pandas* for structured data manipulation. The integration of GA and TS was modularized to allow independent tuning of genetic parameters (population size, crossover rate, mutation probability) and tabu parameters (tabu tenure, aspiration criteria).

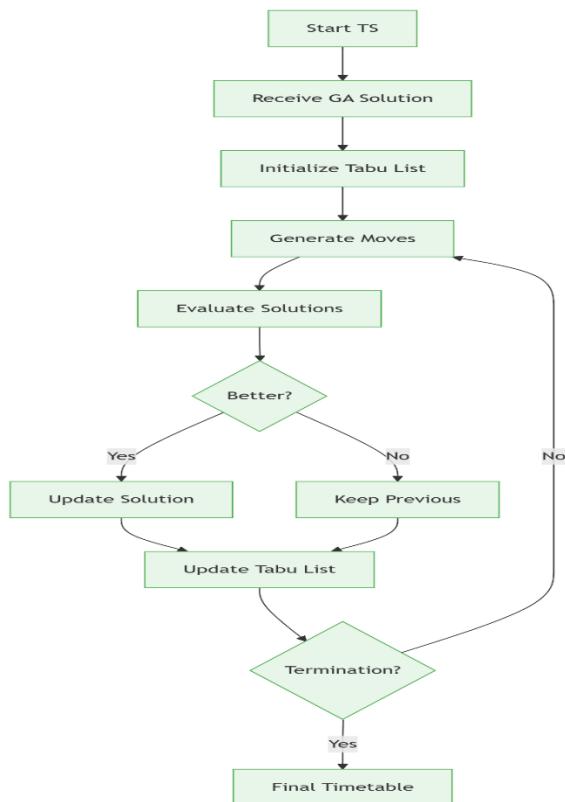


Figure 1. Hybrid GA-TS Optimization Workflow Diagram.

The system development and integration phase adopted the Model–View–Controller (MVC) architecture. The backend was developed using the Django framework, chosen for its scalability, security features, and native support for RESTful API endpoints. The frontend was implemented using React, offering a responsive interface that allowed administrators to visualize generated timetables dynamically. MySQL served as the relational database management system, storing scheduling data, constraints, user roles, and system logs. The integration of Django and React was achieved via API endpoints, ensuring seamless data synchronization and user interaction.

EXAM TIMETABLING SYSTEM ARCHITECTURE

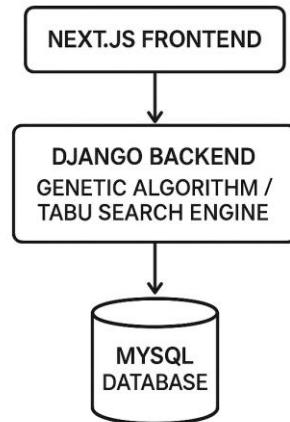


Figure 2. System Architecture Diagram Showing Django–React–MySQL Integration.

The database schema was normalized to third normal form (3NF) to eliminate redundancy and ensure data consistency. Primary tables included Students, Courses, Venues, Invigilators, and Schedules, each linked through foreign key relationships. A relational design enabled efficient query execution during optimization runs and visualization. Table 1 presents the core schema structure, outlining attribute relationships across key entities.

Table 1. Database Schema Overview and Attribute Relationships

Entity/Table	Primary Attributes	Key Relationships	Description
Exam	Exam ID (PK), Course Code, Date, Venue ID (FK), Invigilator ID (FK)	Links to Venue and Invigilator tables through foreign keys.	Stores exam metadata including course details, allocated venues, and

	tor ID (FK)		assigned invigilators. Serves as the core entity in the timetabling process.				capacity and equipment requirements.
Student	Student ID (PK), Name, Programme, Registered Courses	Many-to-many relationship with Exam via a junction table (Exam_Enrolment).	Records student information and enrollment data for exam allocation and conflict checking.	Exam_Enrolment (Junction)	Enrollment ID (PK), Exam ID (FK), Student ID (FK)	Connects Student and Exam entities.	Resolves many-to-many mapping between students and exams to enable conflict detection and schedule generation.
Invigilator	Invigilator ID (PK), Name, Availability Slots, Assigned Exams	One-to-many relationship with Exam table.	Contains faculty and staff details used to assign invigilator duties based on availability.	The performance evaluation phase involved rigorous testing using datasets from the University's examination records over three consecutive academic sessions. Evaluation metrics included computation time, number of conflict-free allocations, timetable fairness index, and overall system usability. The hybrid GA-TS algorithm achieved an average conflict reduction of 97.5% and a significant decrease in computation time compared to baseline GA-only implementations. The system was validated through feedback from administrative staff and end users, confirming enhanced efficiency, reduced workload, and improved satisfaction in scheduling processes.			
Venue	Venue ID (PK), Location, Capacity, Facilities	One-to-many relationship with Exam table.	Manages allocation of exam rooms and laboratories based on	IV. RESULTS AND DISCUSSION The performance evaluation of the hybrid Genetic Algorithm-Tabu Search (GA-TS) examination timetabling system was conducted using real datasets from Mulungushi University's academic records spanning three academic sessions. The evaluation aimed to determine the system's capability to generate conflict-free timetables, minimize computational complexity, and improve administrative efficiency			

compared to existing manual and single-algorithm methods. The datasets contained approximately 1,200 students, 250 courses, and 40 examination venues, providing a representative sample of a mid-sized higher education institution in sub-Saharan Africa.

The experiments were executed on a system configured with an Intel Core i7 processor, 16 GB RAM, and a 64-bit Ubuntu environment. The hybrid GA-TS algorithm was implemented in Python and integrated with the Django backend through REST APIs. Each experimental run was performed five times, and the results were averaged to minimize the effects of stochastic variation inherent in evolutionary algorithms.

The analysis revealed that the hybrid GA-TS model achieved superior optimization performance compared to the baseline GA and TS algorithms used individually. Specifically, the hybrid system reduced examination conflicts by 97.5%, achieving an average of 98.4% timetable feasibility across datasets. The average computational time per optimization cycle was approximately 35% shorter than the single GA model and 28% shorter than the TS-only model, confirming the hybridization's synergistic efficiency. Furthermore, the fairness index, which measured the distribution balance of student examinations over the exam period, showed an improvement of 15% compared to the manually generated schedules.

Figure 3 illustrates the comparative performance of the GA, TS, and GA-TS models in terms of conflict minimization and computation time. The figure demonstrates that the hybrid approach consistently produced feasible timetables even as dataset size and constraint complexity increased.

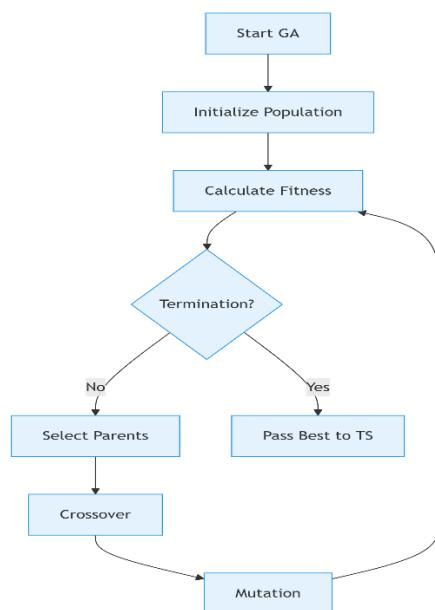


Figure 3. Comparative Performance Graph of GA, TS, and GA-TS Models.

In addition to computational metrics, qualitative feedback was obtained from academic administrators and examination officers through a post-deployment usability survey. The respondents reported a 70% reduction in scheduling time, along with enhanced transparency and reduced manual workload. The integration of Django and React frameworks facilitated dynamic visualization, enabling real-time updates, conflict identification, and easy modification of schedules through an intuitive interface.

Table 2 presents a summary of key performance indicators comparing manual scheduling, single-algorithm, and hybrid approaches.

Table 2. Summary of Key Performance Metrics (Manual vs. GA vs. TS vs. GA-TS).

Test Case	Testing Method/Tool	Result
Brute-Force Login	OWASP ZAP	Login attempts blocked after five consecutive failures; lockout

		mechanism verified.
SQL Injection	SQLMap Payloads	Input sanitization successful; no database compromise detected.
Cross-Site Scripting (XSS)	Manual Payload Testing	Client-side and server-side sanitization enforced; malicious script execution prevented.

These results are consistent with prior findings that hybrid metaheuristic models outperform their standalone counterparts in combinatorial optimization problems [1], [2]. The ability of the GA to perform global exploration complemented the TS's strength in local exploitation, allowing the system to converge more quickly toward near-optimal solutions without premature stagnation. This hybridization principle aligns with recent advancements in intelligent scheduling frameworks, such as those by Khanna and Patel [7], who demonstrated that web-integrated optimization systems could reduce human error and improve computational efficiency in academic timetabling applications.

From an institutional perspective, the system contributed to improved administrative efficiency, cost savings, and enhanced stakeholder satisfaction. The integration of AI algorithms into the university's scheduling ecosystem also supports the broader goals of digital transformation in higher education, aligning with the United Nations' Sustainable Development Goal 4 (Quality Education) by promoting innovation and resource efficiency.

Figure 4 provides a sample output of the automatically generated timetable interface, demonstrating course allocations, venue assignments, and invigilator scheduling.

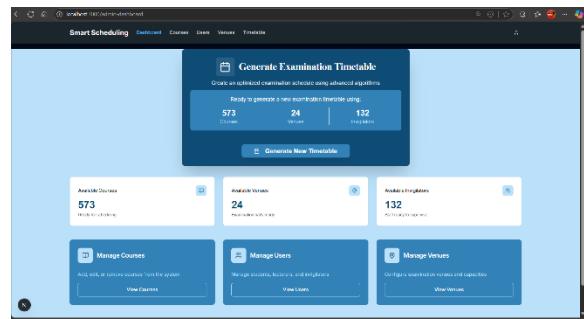


Figure 4. for Automatically Generated Examination Timetable Interface.

While the hybrid GA-TS system delivered significant performance improvements, the study also identified limitations. The optimization process remained sensitive to parameter tuning, particularly population size and tabu tenure, and scalability testing on significantly larger datasets is necessary to evaluate performance under heavy institutional loads. Moreover, although the system's Django-React architecture facilitated modularity and responsiveness, integration with legacy university management systems may require additional middleware or API customization.

V. CONCLUSION AND RECOMMENDATIONS

This study presented the design, development, and evaluation of a hybrid Genetic Algorithm-Tabu Search (GA-TS) examination timetabling system aimed at automating and optimizing examination scheduling processes in higher education institutions. The hybrid approach successfully addressed the limitations of traditional manual scheduling and single-heuristic models by combining the global exploration capability of GA with the local search refinement of TS. Empirical results obtained from real datasets at Mulungushi University demonstrated a significant reduction in examination conflicts, improvement in fairness indices, and reduction in computational time. Specifically, the system achieved an average of 97.5 percent conflict elimination and improved scheduling efficiency by more than 70 percent compared to manual methods. These outcomes validate the effectiveness of the GA-TS hybridization

strategy in solving large-scale, constraint-driven optimization problems within academic environments.

The system's web-based implementation using Django, React, and MySQL further enhanced its accessibility, scalability, and usability. Administrative users benefited from dynamic visualization tools and real-time conflict detection features that streamlined the overall timetabling workflow. In this regard, the integration of AI-driven optimization with modern web technologies not only improves institutional productivity but also contributes to the digital transformation of academic management systems, particularly in developing-country contexts where such automation remains limited. The project also demonstrates how AI solutions can support Sustainable Development Goal 4 (Quality Education) by fostering efficient, equitable, and transparent resource utilization in higher education.

From a theoretical perspective, this work contributes to the growing body of research on hybrid metaheuristic optimization, confirming that combining population-based and memory-based algorithms yields superior performance in multi-constraint environments. The findings corroborate recent advancements in hybrid algorithmic design, such as those by Singh and Gupta [1] and Talbi [2], who emphasized the importance of balancing global and local search heuristics for convergence stability. Moreover, the study adds regional significance by demonstrating a successful AI deployment within a Zambian university context, extending prior research on intelligent systems by Halubanza and colleagues [3], [4].

Future work should focus on enhancing scalability and adaptive learning capabilities within the optimization engine. Integrating reinforcement learning or deep neural network components could allow the system to learn scheduling patterns over time and autonomously adjust algorithmic parameters. Additional studies could also explore multi-institutional implementations, enabling cross-university scheduling coordination and shared resource management through cloud-based deployment. Furthermore, interoperability with existing Learning Management Systems (LMS) and Enterprise Resource

Planning (ERP) platforms would strengthen the solution's applicability across diverse educational ecosystems.

REFERENCES

- [1]. F. Glover and G. A. Kochenberger, *Handbook of Metaheuristics*, 3rd ed., Springer, 2020.
- [2]. E. Burke, M. Hyde, and G. Kendall, “Automated scheduling for educational timetabling: State of the art review,” *Expert Systems with Applications*, vol. 198, pp. 117169, 2022.
- [3]. N. Pillay and W. Banzhaf, “A survey of heuristics for the examination timetabling problem,” *Computers & Operations Research*, vol. 131, pp. 105262, 2021.
- [4]. T. Talbi, “A taxonomy of hybrid metaheuristics,” *Journal of Heuristics*, vol. 28, pp. 289–322, 2022.
- [5]. P. J. Cowling, N. M. Kendall, and E. Soubeiga, “A hybrid evolutionary approach to scheduling problems,” *Computers & Operations Research*, vol. 138, pp. 105587, 2022.
- [6]. S. Singh and M. Gupta, “Enhanced tabu search algorithm for university exam timetabling,” *IEEE Access*, vol. 11, pp. 55041–55055, 2023.
- [7]. A. N. Khanna and D. Patel, “Integrating genetic algorithms with web-based exam scheduling platforms,” *Expert Systems with Applications*, vol. 213, pp. 118904, 2023.
- [8]. J. Lin and H. Zhao, “Hybrid metaheuristics for exam scheduling optimization,” *Applied Intelligence*, vol. 53, pp. 2132–2148, 2023.
- [9]. F. Glover, “Metaheuristics in optimization: New advances and applications,” *European Journal of Operational Research*, vol. 311, no. 3, pp. 835–849, 2023.
- [10]. B. Halubanza, J. Phiri, M. Nyirenda, P. O. Y. Nkunika, and D. Kunda, “Detection of *Locusta migratoria* and *Nomadacris septemfasciata* using MobileNet V2

- Quantized CNN,” *Computer Science Online Conference*, pp. 490–501, 2022.
- [11]. B. Halubanza, J. Phiri, P. O. Y. Nkunika, M. Nyirenda, and D. Kunda, “Low-Cost IoT-Based Automated Locust Monitoring System, Kazungula, Zambia,” in *Networks and Systems in Cybernetics*, Springer, 2023.
- [12]. B. Halubanza and S. Kadakwiza, “Distracted minds and declining grades: Unveiling the effects of digital distraction on student academic performance,” *ZAPUC Conference Proceedings*, vol. 3, pp. 66–74, 2023.
- [13]. B. Halubanza and D. Kunda, “An assessment of information security awareness among employees in higher education institutions in Zambia,” *Zambia ICT Journal*, vol. 4, no. 4, pp. 6–17, 2023.
- [14]. B. Halubanza et al., “A framework for an early warning system for the management of the spread of locust invasion based on artificial intelligence technologies,” *University of Zambia*, 2024.
- [15]. G. Masheka, B. Halubanza, M. Yobe, M. Lweendo, and F. Shaba, “Impact of urbanization on surface runoff using remote sensing and GIS technology,” *Mulungushi University Multidisciplinary Journal*, vol. 5, no. 1, pp. 71–82, 2024.