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Abstract—Tuberculosis (TB) remains a leading cause of 

mortality among people living with HIV (PLHIV) in Zambia, 

posing a major challenge to an already strained health system. 

Zambia’s national electronic health record (EHR) systems, 

contains valuable longitudinal data that could support 

predictive tools for early TB intervention. However, issues such 

as data sparsity, limited analytical capacity, and poor 

interpretability of machine learning (ML) models have slowed 

clinical adoption. This study proposes a hybrid ML framework 

that integrates Random Forest (RF), eXtreme Gradient 

Boosting (XGBoost), and Long Short-Term Memory (LSTM) 

networks, enhanced with SHapley Additive exPlanations 

(SHAP) for transparency. The Design Science Research (DSR) 

methodology guides iterative model development, evaluation, 

and deployment. Preprocessing employs Multiple Imputation 

by Chained Equations (MICE) for missing data, Min-Max 

normalization for scaling, and SMOTE for class balancing. Data 

mapping from EHRs has been completed, and a preprocessing 

pipeline is under development. Initial training and validation 

are being conducted using synthetic EHR datasets, with 

performance measured by F1 Score and Area Under the 

Precision-Recall Curve (AUC-PR). Prototype models will be 

tested in simulated clinical workflows to assess feasibility and 

responsiveness. 

The research contributes a novel ensemble-based approach 

that fuses static and temporal variables with explainable AI, 

supporting early HIV/TB progression prediction and clinician 

trust in low-resource settings. Future work will focus on real-

world validation, stakeholder feedback, and integration into 

national digital health systems. 
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I. INTRODUCTION 

Zambia faces a dual burden of HIV and tuberculosis (TB), 
with TB contributing significantly to AIDS-related mortality 
[1]. Electronic health record (EHR) systems, particularly 
through the SmartCare platform, present a valuable resource 
for developing predictive analytics tools. However, challenges 
such as data sparsity, infrastructure limitations, and clinician 
distrust of black-box models hamper the adoption of artificial 
intelligence (AI) in healthcare. This paper presents a hybrid 
machine learning (ML) framework designed to predict 
TB/HIV progression in PLHIV using real-world EHR data 
from Zambia. The model architecture combines Random 
Forest (RF), eXtreme Gradient Boosting (XGBoost), and 
Long Short-Term Memory (LSTM) networks, supplemented 
by SHapley Additive exPlanations (SHAP) for 

interpretability. The approach is tailored to the constraints and 
requirements of low and middle income countries (LMIC) 
settings. 

II. LITERATURE REVIEW 

Geldsetzer et al. [2] explored the potential of ML models 
for TB/HIV interventions in LMICs, identifying key 
limitations in data quality and model transparency. Rajkomar 
et al. [3] highlighted the risk of algorithmic bias and the 
importance of fairness and reproducibility in health-focused 
AI applications. Locally, Zambia’s EHR systems holds 
longitudinal patient records but suffer from data inconsistency 
and limited analytical usage [4]. While XGBoost has shown 
success in structured health data prediction [5], LSTM models 
excel in capturing temporal trends, such as CD4 count 
dynamics. Lundberg and Lee [6] proposed SHAP to address 
model explainability—a critical requirement in healthcare 
adoption. Earlier approaches such as LIME provided instance-
level explanations for model predictions [7], but SHAP offers 
more consistent and theoretically grounded interpretability. 
Recent reviews have also highlighted the growing role of large 
language models, foundation models, and digital twins in 
clinical data analysis [8], underscoring the importance of 
explainability and applicability in AI.  

The proposed research addresses a gap by combining static 
and temporal ML models in a stackable ensemble while 
maintaining clinical transparency. 

III. METHODOLOGY 

A. Research Design 

The research follows a Design Science Research (DSR) 
methodology to guide the iterative development and 
validation of the model. 

B. Conceptual Framework 

The predictive system comprises interconnected modules 
designed to address the full pipeline from data acquisition to 
clinical deployment. It begins with data collection and 
harmonization, where diverse patient data from Zambia’s 
EHR systems are aggregated and standardized. This is 
followed by a feature engineering and transformation phase, 
in which raw inputs are refined into analytically useful 
variables. The hybrid machine learning (ML) model 
development module integrates various algorithms, including 
tree-based and temporal models, to improve predictive 
performance. Subsequently, a model interpretation and trust-
building component leverages SHAP techniques to generate 
transparent explanations for predictions, facilitating clinical 
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acceptance as illustrated in Fig. 1. Finally, the system 
culminates in a deployment pipeline optimized for integration 
within resource-constrained healthcare settings. 

 

Fig. 1. Conceptual Framework of the Model 

C. Data Preparation 

The study will utilize anonymized datasets extracted from 
Zambia’s national EHR systems. These datasets encompass a 
range of relevant patient-level variables essential for modeling 
TB/HIV disease progression. The demographic attributes 
include patient age, gender, and geographical location. 
Clinical records comprise ART initiation dates, HIV staging 
information, and documented TB history. Laboratory data 
such as CD4 cell counts, viral load measurements, and 
hemoglobin levels are also included. Importantly, the dataset 
features longitudinal sequences of CD4 values over time, 
which are critical for modeling patient trajectories using 
temporal deep learning approaches. All data handling 
procedures will adhere to national data governance 
requirements, including compliance with the Zambia Data 
Protection Act [9]. 

Missing values are handled using Multiple Imputation by 
Chained Equations (MICE), class imbalance with SMOTE, 
and scaling with Min-Max normalization. CD4 slopes and 
trends are derived for LSTM input. 

D. Model Architecture 

The model combines: 

RF: interpretable tree-based learner for static features 

XGBoost: optimized boosting on structured data 

LSTM: time-series analysis of longitudinal variables 

A meta-learner integrates the predictions. SHAP is used to 
provide interpretable insights for both individual and cohort-
level predictions as illustrated in Fig. 2. 

 

Fig. 2. Hybrid Model Architecture 

E. Evaluation Metrics 

To assess the performance of the hybrid predictive model 
in the context of imbalanced health data, particularly where 
the accurate identification of TB progression is vital, two 
primary evaluation metrics are adopted: the F1 Score and the 
Area Under the Precision-Recall Curve (AUC-PR). The F1 
Score serves as the harmonic mean of precision and recall, 
making it an ideal choice in situations with uneven class 
distributions, such as rare disease detection. It ensures that 
both false positives and false negatives are taken into account 
when evaluating the model. On the other hand, AUC-PR 

provides a holistic view of how well the model maintains high 
precision and recall across various threshold levels. Unlike 
ROC-AUC, AUC-PR is more informative in contexts like 
TB/HIV comorbidity prediction, where the positive cases are 
significantly fewer than the negatives. These metrics 
collectively ensure the robustness and reliability of the 
predictive system when deployed in real-world clinical 
environments. Table I summarizes the evaluation metrics used 
in this study and their respective purposes. 

TABLE I. PERFORMANCE METRICS AND THEIR PURPOSE 

Metric Formula Purpose 

F1 Score 
 

 

Balance between 

precision and recall 

AUC-PR 

Integrated PR curve Robust performance 

in imbalanced 

datasets 

a. P = Precision, R = Recall; AUC-PR = Area Under the Precision-Recall Curve 

F. Algorithmic Workflow 

Preprocessing Pipeline 

Input: Raw EHR Data 

Apply MICE for missing fields 

Normalize numerical variables 

Generate CD4 time windows 

Use SMOTE for class rebalancing 

Output: Feature matrix 

Model Training 

A. Train RF and XGBoost on structured data 

B. Train LSTM on CD4 time-series 

C. Feed base outputs into meta-classifier 

D. Apply SHAP for interpretability 

E. Evaluate and export final model 

IV. DISCUSSION AND CONCLUSION 

The proposed hybrid model framework has the potential 
to overcome several technical and contextual limitations 
observed in the application of machine learning (ML) to 
electronic health records (EHRs) in low- and middle-income 
countries (LMICs). SHapley Additive exPlanations (SHAP) 
enhance transparency and may increase clinical adoption by 
showing why a patient is at high risk. Temporal modeling 
using long short-term memory (LSTM) networks enables 
capturing disease progression dynamics that static models 
often miss. 

Implementation challenges include harmonizing variable 
definitions across provinces, managing missing time-stamped 
entries, and building lightweight deployment pipelines 
compatible with Zambian public health infrastructure. Further 
development will focus on improving LSTM stability, 
enhancing SMOTE realism, and validating SHAP usability in 
clinical contexts. As emphasized by Challen et al. [10], 
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addressing bias and ensuring clinical safety remain critical 
when deploying AI in real-world healthcare settings. 

Overall, this work demonstrates the feasibility of 
combining ensemble learning, temporal modeling, and 
explainable AI to strengthen predictive analytics in resource-
constrained environments. By integrating interpretability with 
clinical utility, the proposed framework offers a pathway 
toward actionable decision support in Zambia’s national EHR 
ecosystem. Future efforts will prioritize real-world validation, 
stakeholder engagement, and adaptation of the framework to 
other chronic disease domains, contributing to scalable and 
sustainable digital health strategies in LMIC settings. 
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