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Abstract—Tuberculosis (TB) remains a leading cause of
mortality among people living with HIV (PLHIV) in Zambia,
posing a major challenge to an already strained health system.
Zambia’s national electronic health record (EHR) systems,
contains valuable longitudinal data that could support
predictive tools for early TB intervention. However, issues such
as data sparsity, limited analytical capacity, and poor
interpretability of machine learning (ML) models have slowed
clinical adoption. This study proposes a hybrid ML framework
that integrates Random Forest (RF), eXtreme Gradient
Boosting (XGBoost), and Long Short-Term Memory (LSTM)
networks, enhanced with SHapley Additive exPlanations
(SHAP) for transparency. The Design Science Research (DSR)
methodology guides iterative model development, evaluation,
and deployment. Preprocessing employs Multiple Imputation
by Chained Equations (MICE) for missing data, Min-Max
normalization for scaling, and SMOTE for class balancing. Data
mapping from EHRs has been completed, and a preprocessing
pipeline is under development. Initial training and validation
are being conducted using synthetic EHR datasets, with
performance measured by F1 Score and Area Under the
Precision-Recall Curve (AUC-PR). Prototype models will be
tested in simulated clinical workflows to assess feasibility and
responsiveness.

The research contributes a novel ensemble-based approach
that fuses static and temporal variables with explainable Al,
supporting early HIV/TB progression prediction and clinician
trust in low-resource settings. Future work will focus on real-
world validation, stakeholder feedback, and integration into
national digital health systems.
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I.  INTRODUCTION

Zambia faces a dual burden of HIV and tuberculosis (TB),
with TB contributing significantly to AIDS-related mortality
[1]. Electronic health record (EHR) systems, particularly
through the SmartCare platform, present a valuable resource
for developing predictive analytics tools. However, challenges
such as data sparsity, infrastructure limitations, and clinician
distrust of black-box models hamper the adoption of artificial
intelligence (Al) in healthcare. This paper presents a hybrid
machine learning (ML) framework designed to predict
TB/HIV progression in PLHIV using real-world EHR data
from Zambia. The model architecture combines Random
Forest (RF), eXtreme Gradient Boosting (XGBoost), and
Long Short-Term Memory (LSTM) networks, supplemented
by SHapley Additive exPlanations (SHAP) for
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interpretability. The approach is tailored to the constraints and
requirements of low and middle income countries (LMIC)
settings.

II. LITERATURE REVIEW

Geldsetzer et al. [2] explored the potential of ML models
for TB/HIV interventions in LMICs, identifying key
limitations in data quality and model transparency. Rajkomar
et al. [3] highlighted the risk of algorithmic bias and the
importance of fairness and reproducibility in health-focused
Al applications. Locally, Zambia’s EHR systems holds
longitudinal patient records but suffer from data inconsistency
and limited analytical usage [4]. While XGBoost has shown
success in structured health data prediction [5], LSTM models
excel in capturing temporal trends, such as CD4 count
dynamics. Lundberg and Lee [6] proposed SHAP to address
model explainability—a critical requirement in healthcare
adoption. Earlier approaches such as LIME provided instance-
level explanations for model predictions [7], but SHAP offers
more consistent and theoretically grounded interpretability.
Recent reviews have also highlighted the growing role of large
language models, foundation models, and digital twins in
clinical data analysis [8], underscoring the importance of
explainability and applicability in AL

The proposed research addresses a gap by combining static
and temporal ML models in a stackable ensemble while
maintaining clinical transparency.

III. METHODOLOGY

A. Research Design

The research follows a Design Science Research (DSR)
methodology to guide the iterative development and
validation of the model.

B.  Conceptual Framework

The predictive system comprises interconnected modules
designed to address the full pipeline from data acquisition to
clinical deployment. It begins with data collection and
harmonization, where diverse patient data from Zambia’s
EHR systems are aggregated and standardized. This is
followed by a feature engineering and transformation phase,
in which raw inputs are refined into analytically useful
variables. The hybrid machine learning (ML) model
development module integrates various algorithms, including
tree-based and temporal models, to improve predictive
performance. Subsequently, a model interpretation and trust-
building component leverages SHAP techniques to generate
transparent explanations for predictions, facilitating clinical
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acceptance as illustrated in Fig. 1. Finally, the system
culminates in a deployment pipeline optimized for integration
within resource-constrained healthcare settings.
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Fig. 1. Conceptual Framework of the Model
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C. Data Preparation

The study will utilize anonymized datasets extracted from
Zambia’s national EHR systems. These datasets encompass a
range of relevant patient-level variables essential for modeling
TB/HIV disease progression. The demographic attributes
include patient age, gender, and geographical location.
Clinical records comprise ART initiation dates, HIV staging
information, and documented TB history. Laboratory data
such as CD4 cell counts, viral load measurements, and
hemoglobin levels are also included. Importantly, the dataset
features longitudinal sequences of CD4 values over time,
which are critical for modeling patient trajectories using
temporal deep learning approaches. All data handling
procedures will adhere to national data governance
requirements, including compliance with the Zambia Data
Protection Act [9].

Missing values are handled using Multiple Imputation by
Chained Equations (MICE), class imbalance with SMOTE,
and scaling with Min-Max normalization. CD4 slopes and
trends are derived for LSTM input.

D. Model Architecture
The model combines:

RF: interpretable tree-based learner for static features
XGBoost: optimized boosting on structured data
LSTM: time-series analysis of longitudinal variables

A meta-learner integrates the predictions. SHAP is used to
provide interpretable insights for both individual and cohort-
level predictions as illustrated in Fig. 2.
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Fig. 2. Hybrid Model Architecture

E. Evaluation Metrics

To assess the performance of the hybrid predictive model
in the context of imbalanced health data, particularly where
the accurate identification of TB progression is vital, two
primary evaluation metrics are adopted: the F1 Score and the
Area Under the Precision-Recall Curve (AUC-PR). The F1
Score serves as the harmonic mean of precision and recall,
making it an ideal choice in situations with uneven class
distributions, such as rare disease detection. It ensures that
both false positives and false negatives are taken into account
when evaluating the model. On the other hand, AUC-PR
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provides a holistic view of how well the model maintains high
precision and recall across various threshold levels. Unlike
ROC-AUC, AUC-PR is more informative in contexts like
TB/HIV comorbidity prediction, where the positive cases are
significantly fewer than the negatives. These metrics
collectively ensure the robustness and reliability of the
predictive system when deployed in real-world clinical
environments. Table | summarizes the evaluation metrics used
in this study and their respective purposes.

TABLE I. PERFORMANCE METRICS AND THEIR PURPOSE

Metric Formula Purpose
F1S Fi= \frac{2 -P -RHP + R} | Balance between
core precision and recall
Integrated PR curve Robust performance
AUC-PR in imbalanced
datasets

2 P = Precision, R = Recall; AUC-PR = Area Under the Precision-Recall Curve

F. Algorithmic Workflow
Preprocessing Pipeline

Input: Raw EHR Data
Apply MICE for missing fields
Normalize numerical variables
Generate CD4 time windows
Use SMOTE for class rebalancing
Output: Feature matrix
Model Training
A. Train RF and XGBoost on structured data
B. Train LSTM on CD4 time-series
C. Feed base outputs into meta-classifier
D. Apply SHAP for interpretability

E. Evaluate and export final model

IV. DiSCUSSION AND CONCLUSION

The proposed hybrid model framework has the potential
to overcome several technical and contextual limitations
observed in the application of machine learning (ML) to
electronic health records (EHRs) in low- and middle-income
countries (LMICs). SHapley Additive exPlanations (SHAP)
enhance transparency and may increase clinical adoption by
showing why a patient is at high risk. Temporal modeling
using long short-term memory (LSTM) networks enables
capturing disease progression dynamics that static models
often miss.

Implementation challenges include harmonizing variable
definitions across provinces, managing missing time-stamped
entries, and building lightweight deployment pipelines
compatible with Zambian public health infrastructure. Further
development will focus on improving LSTM stability,
enhancing SMOTE realism, and validating SHAP usability in
clinical contexts. As emphasized by Challen et al. [10],
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addressing bias and ensuring clinical safety remain critical
when deploying Al in real-world healthcare settings.

Overall, this work demonstrates the feasibility of
combining ensemble learning, temporal modeling, and
explainable Al to strengthen predictive analytics in resource-
constrained environments. By integrating interpretability with
clinical utility, the proposed framework offers a pathway
toward actionable decision support in Zambia’s national EHR
ecosystem. Future efforts will prioritize real-world validation,
stakeholder engagement, and adaptation of the framework to
other chronic disease domains, contributing to scalable and
sustainable digital health strategies in LMIC settings.
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