Seventh International Conference in Information and Communication Technologies, Lusaka, Zambia
15th to 16th October 2025

Al-Enabled Drought Prediction System for Zambia

Brian Halubanza
Mulungushi University
Kabwe, Zambia
bhalubanza@gmail.com

Thokozani Shula
Mulungushi University
Kabwe, Zambia
thokozanishulal90@gmail.com

ABSTRACT

Drought poses significant challenges to agriculture, water
resources, and socio-economic stability, particularly in
Zambia. This paper presents an Al-driven drought prediction
system that integrates historical climate data, IoT-based real-
time inputs, and machine learning algorithms, including
ensemble models such as Random Forest, XGBoost, and
LSTMs. The system provides accurate and localized forecasts,
enabling  proactive  decision-making by farmers,
policymakers, and disaster management agencies. Unlike
traditional systems, it emphasizes regional adaptability and
dynamic model retraining to ensure reliability under evolving
climate patterns. Results demonstrate prediction accuracies
above 90%, with ensemble approaches outperforming single
models. This research highlights the potential of Al in
mitigating the impact of climate change by enhancing
resilience in drought-prone regions.
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I. INTRODUCTION

Drought is one of the most severe natural disasters affecting
millions of people globally, with devastating impacts on
food security, water resources, and economic stability.
Zambia has experienced multiple damaging droughts in
recent decades, including 1991-1992, 2015-2016, and
2019-2020. The lack of reliable localized prediction
systems limits the ability of communities and policymakers
to prepare effectively. This research addresses this gap by
developing a robust Al-driven drought prediction system
tailored to Zambia’s unique climatic conditions [3].

II. Literature Review

Traditional drought monitoring methods rely heavily on
indices such as the Standardized Precipitation Index (SPI),
Palmer Drought Severity Index (PDSI), and Crop Moisture
Index (CMI). While these indices provide valuable
historical insights, they struggle to adapt to rapidly shifting
climate variability. Remote sensing approaches—such as
Normalized Difference Vegetation Index (NDVI) and
Vegetation Health Index (VHI)—add spatial context but
remain largely descriptive rather than predictive. Recent
advances in artificial intelligence (AI) and machine
learning (ML) offer new possibilities for predictive
modeling. Techniques such as Support Vector Machines
(SVM), Random Forest (RF), Extreme Gradient Boosting
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(XGBoost), and Recurrent Neural Networks (RNN) have
shown promise in forecasting meteorological anomalies.
However, single-model approaches often fail to capture the
nonlinear, multivariate relationships between precipitation,
temperature, soil moisture, and vegetation response. This
research addresses that gap by using an ensemble
framework combining multiple ML models with real-time
IoT integration. Compared to Zambia’s existing Zambia
Drought Monitoring System (ZADMS), which primarily
tracks rainfall and vegetation indices, the proposed system
enhances adaptability by incorporating loT-driven local
measurements, ensemble model retraining, and interactive
dashboards to provide localized, actionable early warnings.
Recent evaluations highlight that deep learning
architectures such as LSTMs and CNNs can significantly
improve spatiotemporal drought forecasting when
compared to conventional models [6]. Recent research
demonstrates that coupling satellite imagery with Al-based
models enhances predictive capacity, enabling near-real-
time drought monitoring [7].

Traditional drought prediction has relied on statistical
models and historical weather data, which are limited in
their ability to adapt to rapidly changing climate patterns.
Recent advances in artificial intelligence (Al) and machine
learning have enabled more dynamic and localized
forecasting. Various models, including Convolutional
Neural Networks (CNN), Recurrent Neural Networks
(RNN), and Long Short-Term Memory (LSTM) networks,
have been applied for drought forecasting. Existing
systems, such as Zambia’s Drought Monitoring System
(ZADMS), provide satellite-based monitoring but lack
regional adaptability. This work leverages ensemble
machine learning models to enhance accuracy and
reliability from local data unlike international systems as
shown below, while providing user-focused dashboards
and alert systems.
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Figure 1: Global forecast probability of SPI falling below
the selected drought threshold for March 2021, issued at the
end of December 2020.[15]

Figure 1 presents the global forecast probability of the
Standardized Precipitation Index (SPI) falling below a
selected drought threshold for March 2021, as issued in
December 2020. The map uses a color gradient from yellow
to deep red, where darker shades indicate higher drought
probabilities. Regions in South America, sub-Saharan
Africa, South Asia, and Australia show elevated drought
risk, while equatorial areas and parts of North America and
Europe reflect lower probabilities. This visualization
highlights the spatial variability of drought likelihood
across different continents.

Hybrid Al approaches that explicitly integrate climate
change projections have been shown to increase predictive
reliability under shifting climatic baselines [8].
Comparable studies confirm that ensemble methods
outperform single-model approaches, especially in
capturing multivariate climate—soil—-vegetation interactions
[9]. Emerging frameworks now leverage AloT-enabled
sensor networks to deliver real-time drought early warning
systems with higher regional adaptability [10].

III. METHODOLOGY

The system was developed using the Agile Scrum
methodology, ensuring iterative development and
stakeholder involvement. Historical climate data, including
rainfall, temperature, and humidity, were combined with
real-time inputs from IoT devices. Data preprocessing
ensured quality and consistency. Machine learning models,
including Random Forest, XGBoost, and neural networks,
were trained and evaluated. An ensemble approach was
adopted to maximize prediction accuracy. The system
architecture follows a microservices design, implemented
with Flask APIs, MySQL and databases. Security,
scalability, and fault tolerance were embedded into the
design.
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Figure 2: Figure 2. Drought distribution, SPI trends,
seasonal rainfall patterns, and climate index correlations
(2000-2024).

Figure 2 presents a multi-panel overview of drought and
climate variability between 2000 and 2024. The top-left
panel shows the annual distribution of drought categories,
with severe and extreme droughts concentrated in recent
years. The top-right panel illustrates the 6-month SPI
trends, capturing fluctuations and recurring drought events
over time. The bottom-left panel compares monthly rainfall
patterns with drought frequency, highlighting seasonal
peaks and troughs. The bottom-right heatmap displays
correlations among key climate indices, indicating strong
linkages between rainfall, SPI values, and related
atmospheric drivers. Together, these visualizations provide
a comprehensive perspective on drought dynamics and
their climatic associations.

Similar Al and IoT deployments in Zambian contexts
inform these design choices [12], [13].

Table I: Comparison of Existing Drought Monitoring
Systems vs Proposed Framework

Criteria Existing Proposed
Systems (SPI, Ensemble Al
NDVI, System
ZADMS)
Data Sources Satellite data, | Historical + IoT
broad sensor +
precipitation satellite data
indices
Modeling Statistical & Machine
Technique regression- learning (RF,
based indices XGBoost,
LSTM,
Ensemble)
Regional Generalized, Localized,
Customization low region-specific
adaptability models
Outputs Risk maps, Actionable
severity alerts,
indices dashboards,
forecasts
Update Static or Dynamic,
Frequency seasonal continuous
updates retraining
Accuracy Moderate (60— High (90%+)
70%) with ensemble
learning

Table [ compares existing drought monitoring systems such
as SPI, NDVI, and ZADMS with the proposed ensemble
Al-based framework. Traditional systems rely mainly on
satellite data and statistical indices, offering generalized
outputs like risk maps with moderate accuracy and limited
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adaptability. In contrast, the proposed framework
integrates historical records, [oT sensor data, and satellite
inputs, applying advanced machine learning models such
as Random Forest, XGBoost, and LSTMs. This approach
supports localized customization, delivers actionable
forecasts through dashboards and alerts, enables
continuous model retraining, and achieves higher
predictive accuracy above 90%.

IV. RESULTS AND DISCUSSION

The ensemble model achieved an accuracy of 97.3%,
outperforming standalone models such as XGBoost
(65.1%). Evaluation metrics including precision (0.95),
recall (0.94), and Fl-score (0.945) confirmed the
robustness of the system. System testing demonstrated
reliable prediction of past drought events in Zambia,
aligning with historical data from 1991-1992 and 2015—
2016. The system also includes a user dashboard with
interactive drought maps, historical trend visualization, and
real-time alerts. These features ensure usability for diverse
stakeholders, from farmers to policymakers.

Figure 3 displays the DroughtGuard system dashboard,
which summarizes real-time drought risk levels and
meteorological conditions across different locations in
Zambia. The top panel highlights the overall drought
summary, indicating the number of high-, moderate-, and
low-risk areas along with average temperature and
humidity values. The lower panels provide city-specific
forecasts for Choma, Livingstone, and Lusaka, including
temperature, humidity, wind speed, pressure, rainfall, and
cloud cover. Each location is assigned a drought risk level,
visually supporting decision-makers with localized,
actionable insights.

DroughtGuard

Drought Summary

Livingstone

18.91°C
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Figure 3: DroughtGuard system dashboard showing real-
time drought risk monitoring across selected Zambian
cities.
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Figure 4:. Historical drought event analysis using SPI
values displayed on the DroughtGuard system.

Figure 4 illustrates the DroughtGuard system’s analysis of
historical drought patterns based on the Standardized
Precipitation Index (SPI). The top panel summarizes key
drought metrics, reporting a total of nine major drought
events, an average duration of 6.4 months, and an average
severity level of 2. The main graph plots monthly SPI
values, highlighting fluctuations between wet and dry
conditions across the observation period. Negative SPI
values indicate drought episodes of varying intensity, while
positive values correspond to wetter-than-normal
conditions. This visualization demonstrates how the system
integrates historical climate variability with ensemble
predictions to contextualize future drought risk.

Quarterly Predictions

Q22025 Q3 2025
Moderate Drought

Confidence: 89% Confidence: 75%
SPI Valve: -1.35 SPI Value: -0.82
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Figure 5. Quarterly drought predictions generated by the
DroughtGuard system for Western Province, Zambia.

Figure 5 presents quarterly drought forecasts produced by
the DroughtGuard system, focusing on Western Province,
Zambia. The model predicts a moderate drought in Q2 2025
with an 89% confidence level and an SPI value of —1.35,
followed by a mild drought in Q3 2025 with a 75%
confidence level and an SPI value of —0.82. Supplementary
information indicates that the model is active, updated in
real-time, and integrates data from weather stations and
machine learning models, with a confidence range of 75—
95%. This figure highlights the system’s ability to generate
forward-looking, location-specific drought warnings,
thereby enabling proactive risk management and decision-
making.

Table II: Model Performance Metrics
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Model Accuracy | Precision | Recall | FI-
score
XGBoost 65.1% 0.62 0.64 0.63
LSTM 92.4% 0.91 092 | 0915
Random 88.7% 0.87 0.88 | 0.875
Forest
Ensemble 97.3% 0.95 0.94 | 0.945

Table II summarizes the performance metrics of individual
machine learning models compared to the ensemble
approach. Among the single models, the LSTM achieved
the highest accuracy (92.4%) and balanced precision,
recall, and Fl-score values, outperforming both Random
Forest and XGBoost. Random Forest performed
moderately well with accuracy above 88%, while XGBoost
showed relatively weaker predictive power with accuracy
at 65.1%. The ensemble model, which integrates multiple
algorithms, demonstrated the best overall performance with
an accuracy of 97.3% and consistently high precision
(0.95), recall (0.94), and Fl-score (0.945). These results
confirm that combining models significantly improves
prediction reliability over standalone approaches.

V. CONCLUSION AND FUTURE WORK

This research presents an Al-enabled drought prediction
system that leverages machine learning and real-time data
to provide localized, actionable forecasts. The system
significantly improves drought preparedness and resilience
in Zambia. Future work will focus on integrating global
climate models for long-term forecasting, expanding to
national coverage, and incorporating mobile-based SMS
alerts in local languages to improve accessibility for rural
communities. Complementary research on land-use and
hydrological change in Zambia underscores integrating
prediction within broader resilience planning [14].
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