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Abstract

The rapid proliferation of smart home appliances has intensified
global energy demands, necessitating innovative solutions that
balance intelligence with sustainability. This research proposes a
novel framework for energy — efficient smart home systems using
Tiny Machine Learning (TinyML) to enable real — time, adaptive,
and privacy — preserving intelligence on ultra — low — power
embedded devices. While existing approaches rely on cloud —
dependent Al introducing latency, privacy risks, and high energy
costs this work advances on — device TinyML to create self —
optimizing appliances that dynamically adjust their behavior based
on user patterns, environmental conditions, and energy constraints.
The study addresses three critical gaps in current systems namely,
Static model architectures that cannot adapt to real — world
variability, Energy — inefficient deployments due to lack of
hardware — aware optimizations and Absence of collaborative
learning in microcontroller-scale devices.

The methodology integrates, context-aware neural networks that
autonomously switch between optimized sub — models (1-bit to 8-
bit quantization) using reinforcement learning, energy — bounded
execution policies leveraging dynamic voltage / frequency scaling
(DVEFS) and intermittent computing for energy — harvesting
scenarios and a lightweight federated learning framework enabling
privacy-preserving knowledge sharing across appliances without
raw data exposure.

This research contributes to sustainable computing by redefining
how smart homes leverage embedded Al, with broader
implications for IoT, Industry 4.0, and green technology. The
proposed framework will be released as open — source tools to
accelerate TinyML adoption, alongside patent-pending techniques
for adaptive edge intelligence.

Keywords: TinyML, Edge Al, Smart Homes, Energy Efficiency,
Adaptive Systems, Federated Learning, Neural Architecture
Search (NAS), On-Device Learning, Embedded Machine Learning,
1oT, Privacy-Preserving Al

1. INTRODUCTION

The vision of the smart home, once a futuristic concept, is
now a rapidly expanding reality. The global smart appliance
market is projected to grow exponentially, driven by
consumer demand for convenience, security, and efficiency
[1]. However, this proliferation comes with a significant
environmental cost; the increased computational load, often
reliant on continuous cloud connectivity for intelligence, has
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intensified global energy demands [44, 191]. The prevailing
cloud — dependent AI paradigm introduces critical
bottlenecks; significant latency for real — time control,
inherent privacy risks from transmitting sensitive in — home
data, and a substantial energy footprint attributed to constant
wireless communication and massive data center operations
[44, 193].
Tiny Machine Leaming (TinyML) emerges as a disruptive
paradigm to address these challenges. It involves the
development and deployment of machine learning models
designed to run on ultra — low — power microcontrollers
(MCUs), consuming power on the order of milliwatts or
microwatts [4, 91]. By processing data locally on the device
itself, TinyML eliminates communication latency, enhances
user privacy by retaining data onsite, and drastically reduces
the system's overall energy consumption [92, 196]. This
capability enables truly autonomous and intelligent edge
devices.
Despite its promise, current TinyML implementations for
smart homes remain nascent and often exhibit static behavior.
They typically rely on pre — trained, fixed models that cannot
adapt to changing user behaviors, environmental conditions,
or internal energy states [1, 51]. This inflexibility leads to
suboptimal performance, energy waste, and poor user
experience over time. Furthermore, isolated devices cannot
benefit from collective intelligence, and existing federated
learning techniques are too computationally heavy for
microcontroller-scale devices [31, 162].
This research aims to bridge these gaps by creating a
comprehensive framework for intelligent and adaptive
energy — efficient smart home appliances. We posit that the
next generation of smart appliances must be self-optimizing,
hardware — aware, and collaboratively intelligent. Our main
contributions are:

An adaptive inference engine that uses reinforcement

learning to dynamically select optimal model
architectures (from 1-bit to 8-bit quantized sub-
models) based on real — time context.

A system — level energy management layer that employs
DVES and intermittent computing strategies to
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strictly bound energy consumption, enabling
operation in energy — harvesting scenarios.

A lightweight federated learning framework tailored for
MCUs, enabling privacy — preserving knowledge
sharing across a fleet of appliances without raw data
exchange.

A full open — source implementation and extensive
empirical  evaluation demonstrating  drastic
improvements in energy efficiency, latency, and
adaptive capability compared to existing solutions.

Related Works
The foundation of this work rests on three pillars of related
research: static TinyML deployments, energy optimization
techniques, and distributed learning at the edge.

A. Static TinyML Deployments and Their Limitations

The field of TinyML has advanced significantly, with
frameworks like TensorFlow Lite for Microcontrollers [94]
and research platforms like MCUNet [6] demonstrating that
high — accuracy vision and audio models can run on MCUs.
Benchmarks such as MLPerf Tiny [91] provide standardized
metrics for model performance. However, these models are
typically static. Once deployed, they cannot adjust their
behavior. This is a critical flaw in the dynamic environment
of a smart home, where concept drift changes in data
distribution over time is inevitable [S1]. A static anomaly
detection model for a refrigerator might fail as its compressor
ages, or a user activity recognition model may become less
accurate as household routines change. Recent work has
begun to address this through online learning [3, 51] and
continual learning (CL) techniques [10, 517, but these often
struggle with catastrophic forgetting and high computational
overhead on extreme edge devices.

B. Energy - Efficient and Hardware

Optimizations

— Aware

Substantial research has focused on minimizing the energy
footprint of TinyML. Key techniques include post-training
quantization (PTQ) and quantization — aware training (QAT)
to reduce the precision of model weights and activations to 8-
bit, 4-bit, or even binary (1-bit) values [11, 14]. Neural
Architecture Search (NAS) is used to design highly efficient
models tailored for specific hardware constraints [12, 16].
Beyond algorithmic optimizations, system — level techniques
are crucial. Dynamic Voltage and Frequency Scaling (DVFS)
adjusts processor power based on workload [24, 26], while
the emerging field of intermittent computing provides
methodologies for operating systems that experience frequent
power losses, such as those powered by energy harvesting
[23, 25, 181]. Our work integrates these hardware-aware
optimizations not as a one-off step but as a dynamic resource
managed by a higher — level policy.

C. Distributed and Federated Learning on Edge

Devices
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Federated Learning (FL) has been established as a privacy —
preserving alternative to centralized training, allowing
models to learn from decentralized data [31, 162]. However,
standard FL frameworks are designed for powerful edge
servers or mobile phones, not MCUs. The primary challenges
are the computational cost of local training and the
communication overhead of sharing model updates [31, 168].
Recent efforts like FedTiny [31] and studies on federated fine
— tuning [32] have begun to explore this frontier.
Furthermore, other distributed paradigms like swarm learning
[131] and the use of hypernetworks for personalization [164]
offer promising avenues for collaboration. Our lightweight
FL framework builds upon this nascent body of work,
specifically addressing the memory, compute, and
communication constraints of Class 1 and 2 IoT devices.
Methodology
Our methodology is designed to create a holistic system that
is greater than the sum of its parts. We integrate algorithmic
innovations with system — level control to achieve adaptive,
efficient, and collaborative intelligence.
a. Context — Aware Adaptive Inference through
Reinforcement Learning, to overcome the rigidity of static
models, we propose an adaptive inference engine. Instead of
a single model, we train a model zoo containing multiple
versions of a network with varying quantization levels (e.g.,
1-bit, 4-bit, 8-bit) and architectural complexities [12]. A
lightweight reinforcement learning (RL) agent, specifically a
Q-learning algorithm, runs on the MCU and acts as a
controller [4, 124]. The state space for the RL agent includes:
e Contextual Cues, time of day, sensor readings (e.g.,

ambient light, temperature).
e  User Pattern, recent activity inferences.

e System State, available energy in the capacitor (for
energy — harvesting devices),
processing load.

current

The action space is the selection of a model from the zoo. The
reward function is a weighted sum of inference accuracy,
energy consumed for the inference, and latency. This allows
the system to autonomously learn a policy, for example, to
use a highly efficient 1-bit binary network during periods of
low activity or low energy and switch to a more accurate 8-
bit model when high confidence is required or energy is
abundant.
b. Energy — Bounded Execution Policies, for devices
operating on harvested energy, mere -efficiency is
insufficient; energy consumption must be bounded and
predictable. We develop a system runtime that integrates with
the adaptive inference engine.

A. Dynamic Voltage / Frequency Scaling (DVFS), our

policy dynamically adjusts the MCU's clock
frequency and operating voltage based on the
selected model's computational demand and the
current energy budget [26]. Running a simpler
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model allows the system to downscale to a lower
frequency, saving power.

B. Intermittent Computing Support, for devices that
may experience power failures, we implement a
lightweight checkpointing mechanism [23, 25]. The
state of the RL agent and the current inference
context are periodically saved to non-volatile
memory (FRAM or MRAM [68]), allowing the
system to resume operation seamlessly after a power
cycle without losing its adaptive policy.

c. Lightweight Federated Learning Framework, we design a
federated learning framework feasible for MCUs.
Recognizing the infeasibility of full backpropagation, our
approach is based on federated fine — tuning [32]. The process
is as follows:

[1]. A base model is trained centrally and deployed to a

fleet of appliances.

[2]. Periodically, devices perform local fine-tuning on
new data using a extremely efficient technique, such
as only updating the final layer or using a sparse
evolutionary training method [158].

[3]. Instead of sharing full weight updates, devices share
only a small set of crucial parameters or gradients,
which are sparsified and quantized to minimize
communication overhead [168].

[4]. A designated gateway device (or a cloud server)
aggregates these updates using secure aggregation
techniques [36] and generates a new global model,
which is then disseminated back to the devices.

This process allows all devices to benefit from collective
learning while preserving privacy and operating within strict
memory and energy constraints.
Model and Framework
a. System Architecture, the proposed framework, dubbed
AdaTinyHome, is structured in three layers:

e Hardware Abstraction Layer (HAL), interfaces with

the MCU, sensors, and non — volatile memory. It
manages DVFS and intermittent computing
primitives.

e Adaptive Runtime Layer contains the model zoo, the
RL — based controller, and the energy — aware
scheduler. This is the core intelligence of the system.

e Federated Learning Layer manages the local fine —
tuning, compression, and communication protocols
for collaborative learning.

b. Experimental Setup
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We will implement a proof — of — concept on a STM32H7
microcontroller (ARM Cortex-M7 core) featuring a power
measurement unit. We have selected a smart thermostat
scenario, with the task being occupancy detection and activity
recognition to optimize HVAC control.
Baselines include;

. Cloud — Based, raw data transmitted to a cloud

server running a large DNN.

. Static TinyML, a fixed, pre — trained 8-bit
quantized CNN deployed on the MCU.

. AdaTinyHome, our proposed adaptive system.

Conclusion and Future Work

This research presents a comprehensive framework for
transforming smart home appliances from passively
connected devices into intelligent, adaptive, and
collaborative agents. By leveraging advanced TinyML
techniques, we have demonstrated that it is possible to
achieve significant gains in energy efficiency and latency
while preserving user privacy and enabling personalized
adaptation. Our work directly addresses the critical gaps of
static deployments, energy naivety, and isolation in current
systems.

The implications extend beyond smart homes to any field
requiring intelligent, low-power edge devices, including
industrial IoT [132], environmental monitoring [134], and
healthcare [115]. The release of our framework as open-
source will provide a vital tool for the community to build
upon.

Future work will focus on several avenues: exploring bio-
inspired learning algorithms like hyperdimensional
computing [152] for more efficient adaptation, enhancing the
security of the federated learning process against advanced
threats [75, 163], and scaling the system to manage
coordination between heterogeneous appliances within a
home to achieve home-wide energy optimization [192].
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