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Abstract  

The rapid proliferation of smart home appliances has intensified 
global energy demands, necessitating innovative solutions that 

balance intelligence with sustainability. This research proposes a 
novel framework for energy – efficient smart home systems using 
Tiny Machine Learning (TinyML) to enable real – time, adaptive, 
and privacy – preserving intelligence on ultra – low – power 
embedded devices. While existing approaches rely on cloud – 
dependent AI introducing latency, privacy risks, and high energy 
costs this work advances on – device TinyML to create self – 
optimizing appliances that dynamically adjust their behavior based 

on user patterns, environmental conditions, and energy constraints. 
The study addresses three critical gaps in current systems namely, 
Static model architectures that cannot adapt to real – world 
variability, Energy – inefficient deployments due to lack of 
hardware – aware optimizations and Absence of collaborative 
learning in microcontroller-scale devices. 
The methodology integrates, context-aware neural networks that 
autonomously switch between optimized sub – models (1-bit to 8-

bit quantization) using reinforcement learning, energy – bounded 
execution policies leveraging dynamic voltage / frequency scaling 
(DVFS) and intermittent computing for energy – harvesting 
scenarios and a lightweight federated learning framework enabling 
privacy-preserving knowledge sharing across appliances without 
raw data exposure. 
This research contributes to sustainable computing by redefining 
how smart homes leverage embedded AI, with broader 
implications for IoT, Industry 4.0, and green technology. The 

proposed framework will be released as open – source tools to 
accelerate TinyML adoption, alongside patent-pending techniques 
for adaptive edge intelligence. 

Keywords: TinyML, Edge AI, Smart Homes, Energy Efficiency, 

Adaptive Systems, Federated Learning, Neural Architecture 

Search (NAS), On-Device Learning, Embedded Machine Learning, 

IoT, Privacy-Preserving AI. 

I. INTRODUCTION 

The vision of the smart home, once a futuristic concept, is 

now a rapidly expanding reality. The global smart appliance 

market is projected to grow exponentially, driven by 

consumer demand for convenience, security, and efficiency 

[1]. However, this proliferation comes with a significant 

environmental cost; the increased computational load, often 

reliant on continuous cloud connectivity for intelligence, has 

intensified global energy demands [44, 191]. The prevailing 

cloud – dependent AI paradigm introduces critical 

bottlenecks; significant latency for real – time control, 

inherent privacy risks from transmitting sensitive in – home 

data, and a substantial energy footprint attributed to constant 

wireless communication and massive data center operations 

[44, 193]. 

Tiny Machine Learning (TinyML) emerges as a disruptive 

paradigm to address these challenges. It involves the 

development and deployment of machine learning models 

designed to run on ultra – low – power microcontrollers 

(MCUs), consuming power on the order of milliwatts or 
microwatts [4, 91]. By processing data locally on the device 

itself, TinyML eliminates communication latency, enhances 

user privacy by retaining data onsite, and drastically reduces 

the system's overall energy consumption [92, 196]. This 

capability enables truly autonomous and intelligent edge 

devices. 

Despite its promise, current TinyML implementations for 

smart homes remain nascent and often exhibit static behavior. 

They typically rely on pre – trained, fixed models that cannot 

adapt to changing user behaviors, environmental conditions, 

or internal energy states [1, 51]. This inflexibility leads to 
suboptimal performance, energy waste, and poor user 

experience over time. Furthermore, isolated devices cannot 

benefit from collective intelligence, and existing federated 

learning techniques are too computationally heavy for 

microcontroller-scale devices [31, 162]. 

This research aims to bridge these gaps by creating a 

comprehensive framework for intelligent and adaptive 

energy – efficient smart home appliances. We posit that the 

next generation of smart appliances must be self-optimizing, 

hardware – aware, and collaboratively intelligent. Our main 

contributions are: 

An adaptive inference engine that uses reinforcement 

learning to dynamically select optimal model 

architectures (from 1-bit to 8-bit quantized sub-

models) based on real – time context. 

A system – level energy management layer that employs 

DVFS and intermittent computing strategies to 
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strictly bound energy consumption, enabling 

operation in energy – harvesting  scenarios. 

A lightweight federated learning framework tailored for 

MCUs, enabling privacy – preserving knowledge 

sharing across a fleet of appliances without raw data 

exchange. 

A full open – source implementation and extensive 

empirical evaluation demonstrating drastic 

improvements in energy efficiency, latency, and 

adaptive capability compared to existing solutions. 

Related Works 

The foundation of this work rests on three pillars of related 

research: static TinyML deployments, energy optimization 

techniques, and distributed learning at the edge. 

A. Static TinyML Deployments and Their Limitations 

The field of TinyML has advanced significantly, with 

frameworks like TensorFlow Lite for Microcontrollers [94] 

and research platforms like MCUNet [6] demonstrating that 

high – accuracy vision and audio models can run on MCUs. 

Benchmarks such as MLPerf Tiny [91] provide standardized 

metrics for model performance. However, these models are 

typically static. Once deployed, they cannot adjust their 

behavior. This is a critical flaw in the dynamic environment 

of a smart home, where concept drift changes in data 

distribution over time is inevitable [51]. A static anomaly 
detection model for a refrigerator might fail as its compressor 

ages, or a user activity recognition model may become less 

accurate as household routines change. Recent work has 

begun to address this through online learning [3, 51] and 

continual learning (CL) techniques [10, 51], but these often 

struggle with catastrophic forgetting and high computational 

overhead on extreme edge devices. 

B. Energy – Efficient and Hardware – Aware 

Optimizations 

Substantial research has focused on minimizing the energy 

footprint of TinyML. Key techniques include post-training 

quantization (PTQ) and quantization – aware training (QAT) 

to reduce the precision of model weights and activations to 8-

bit, 4-bit, or even binary (1-bit) values [11, 14]. Neural 

Architecture Search (NAS) is used to design highly efficient 

models tailored for specific hardware constraints [12, 16]. 

Beyond algorithmic optimizations, system – level techniques 

are crucial. Dynamic Voltage and Frequency Scaling (DVFS) 
adjusts processor power based on workload [24, 26], while 

the emerging field of intermittent computing provides 

methodologies for operating systems that experience frequent 

power losses, such as those powered by energy harvesting 

[23, 25, 181]. Our work integrates these hardware-aware 

optimizations not as a one-off step but as a dynamic resource 

managed by a higher – level policy. 

C. Distributed and Federated Learning on Edge 

Devices 

Federated Learning (FL) has been established as a privacy – 

preserving alternative to centralized training, allowing 

models to learn from decentralized data [31, 162]. However, 

standard FL frameworks are designed for powerful edge 

servers or mobile phones, not MCUs. The primary challenges 
are the computational cost of local training and the 

communication overhead of sharing model updates [31, 168]. 

Recent efforts like FedTiny [31] and studies on federated fine 

– tuning [32] have begun to explore this frontier. 

Furthermore, other distributed paradigms like swarm learning 

[131] and the use of hypernetworks for personalization [164] 

offer promising avenues for collaboration. Our lightweight 

FL framework builds upon this nascent body of work, 

specifically addressing the memory, compute, and 

communication constraints of Class 1 and 2 IoT devices. 

Methodology 
Our methodology is designed to create a holistic system that 

is greater than the sum of its parts. We integrate algorithmic 

innovations with system – level control to achieve adaptive, 

efficient, and collaborative intelligence. 

a.  Context – Aware Adaptive Inference through 

Reinforcement Learning, to overcome the rigidity of static 

models, we propose an adaptive inference engine. Instead of 

a single model, we train a model zoo containing multiple 

versions of a network with varying quantization levels (e.g., 

1-bit, 4-bit, 8-bit) and architectural complexities [12]. A 

lightweight reinforcement learning (RL) agent, specifically a 

Q-learning algorithm, runs on the MCU and acts as a 
controller [4, 124]. The state space for the RL agent includes: 

• Contextual Cues, time of day, sensor readings (e.g., 

ambient light, temperature). 

• User Pattern, recent activity inferences. 

• System State, available energy in the capacitor (for 

energy – harvesting devices), current 

processing load. 

The action space is the selection of a model from the zoo. The 

reward function is a weighted sum of inference accuracy, 

energy consumed for the inference, and latency. This allows 

the system to autonomously learn a policy, for example, to 

use a highly efficient 1-bit binary network during periods of 

low activity or low energy and switch to a more accurate 8-

bit model when high confidence is required or energy is 

abundant. 

b.  Energy – Bounded Execution Policies, for devices 

operating on harvested energy, mere efficiency is 
insufficient; energy consumption must be bounded and 

predictable. We develop a system runtime that integrates with 

the adaptive inference engine. 

A. Dynamic Voltage / Frequency Scaling (DVFS), our 

policy dynamically adjusts the MCU's clock 

frequency and operating voltage based on the 

selected model's computational demand and the 

current energy budget [26]. Running a simpler 
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model allows the system to downscale to a lower 

frequency, saving power. 

B. Intermittent Computing Support, for devices that 

may experience power failures, we implement a 

lightweight checkpointing mechanism [23, 25]. The 

state of the RL agent and the current inference 

context are periodically saved to non-volatile 

memory (FRAM or MRAM [68]), allowing the 

system to resume operation seamlessly after a power 

cycle without losing its adaptive policy. 

c.  Lightweight Federated Learning Framework, we design a 
federated learning framework feasible for MCUs. 

Recognizing the infeasibility of full backpropagation, our 

approach is based on federated fine – tuning [32]. The process 

is as follows: 

[1]. A base model is trained centrally and deployed to a 

fleet of appliances. 

[2]. Periodically, devices perform local fine-tuning on 

new data using a extremely efficient technique, such 

as only updating the final layer or using a sparse 

evolutionary training method [158]. 

[3]. Instead of sharing full weight updates, devices share 

only a small set of crucial parameters or gradients, 

which are sparsified and quantized to minimize 

communication overhead [168]. 

[4]. A designated gateway device (or a cloud server) 

aggregates these updates using secure aggregation 

techniques [36] and generates a new global model, 

which is then disseminated back to the devices. 

This process allows all devices to benefit from collective 

learning while preserving privacy and operating within strict 

memory and energy constraints. 

Model and Framework 

a.  System Architecture, the proposed framework, dubbed 

AdaTinyHome, is structured in three layers: 

● Hardware Abstraction Layer (HAL), interfaces with 

the MCU, sensors, and non – volatile memory. It 

manages DVFS and intermittent computing 

primitives. 

● Adaptive Runtime Layer contains the model zoo, the 

RL – based controller, and the energy – aware 

scheduler. This is the core intelligence of the system. 

● Federated Learning Layer manages the local fine – 

tuning, compression, and communication protocols 

for collaborative learning. 

b.  Experimental Setup 

We will implement a proof – of – concept on a STM32H7 

microcontroller (ARM Cortex-M7 core) featuring a power 

measurement unit. We have selected a smart thermostat 

scenario, with the task being occupancy detection and activity 

recognition to optimize HVAC control. 
Baselines include; 

• Cloud – Based, raw data transmitted to a cloud 

server running a large DNN. 

• Static TinyML, a fixed, pre – trained 8-bit 

quantized CNN deployed on the MCU. 

• AdaTinyHome, our proposed adaptive system. 

Conclusion and Future Work 

This research presents a comprehensive framework for 

transforming smart home appliances from passively 

connected devices into intelligent, adaptive, and 
collaborative agents. By leveraging advanced TinyML 

techniques, we have demonstrated that it is possible to 

achieve significant gains in energy efficiency and latency 

while preserving user privacy and enabling personalized 

adaptation. Our work directly addresses the critical gaps of 

static deployments, energy naivety, and isolation in current 

systems. 

The implications extend beyond smart homes to any field 

requiring intelligent, low-power edge devices, including 

industrial IoT [132], environmental monitoring [134], and 

healthcare [115]. The release of our framework as open-

source will provide a vital tool for the community to build 
upon. 

Future work will focus on several avenues: exploring bio-

inspired learning algorithms like hyperdimensional 

computing [152] for more efficient adaptation, enhancing the 

security of the federated learning process against advanced 

threats [75, 163], and scaling the system to manage 

coordination between heterogeneous appliances within a 

home to achieve home-wide energy optimization [192]. 
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