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Abstract— Advanced machine learning models offer 

superior accuracy in credit scoring, but their "black 

box" nature hinders regulatory compliance and erodes 

trust. This paper addresses this challenge by presenting 

a hybrid framework, developed using a Design Science 

Research (DSR) methodology, to integrate model-

agnostic Explainable AI (XAI) into the credit scoring 

pipeline. The framework applies leading XAI techniques, 

specifically SHAP and LIME, to a range of supervised 

learning models. A functional, interactive prototype was 

developed and tested using credit data from the Zambian 

market. Experimental results revealed a stark 

"Accuracy Paradox": models with the highest accuracy 

(84.6%) achieved a perfect specificity of 1.000 by never 

predicting the minority class, resulting in an F1-Score of 

only 0.458 and an ROC AUC worse than a random guess 

(as low as 0.432). XAI techniques proved crucial for 

diagnosing these failures and providing clear, feature-

based explanations for individual loan decisions. This 

research contributes a practical, integrated artifact that 

systematically compares multiple models and 

explanation methods, bridging the gap between complex 

ML implementation and the pressing need for fair, 

transparent, and accountable financial decision-making. 
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INTRODUCTION 

Credit scoring is a cornerstone of modern 
financial services. The drive for higher predictive 
accuracy has led to the adoption of complex 
machine learning (ML) models, such as Random 
Forests [1] and Gradient Boosting Machines [2], 
which are extensively detailed in foundational 
texts like The Elements of Statistical 
Learning [3]. While powerful, these models often 
operate as opaque "black boxes," creating critical 
problems with severe consequences, including 

significant financial losses, reputational damage, 
and direct legal risks. 

This opacity creates a direct conflict with 
regulatory mandates. In the Zambian context, the 
Data Protection Act, No. 3 of 2021, requires 
fairness in automated processing, while the Credit 
Reporting Act, No. 8 of 2018, mandates that 
consumers receive the principal reasons for 
adverse credit actions. The inscrutable nature of 
black-box models makes compliance a significant 
challenge. 

To address this, the field of Explainable AI 
(XAI) offers techniques to demystify ML 
models [4]. This paper leverages a Design Science 
Research (DSR) methodology [5] to create and 
evaluate a tangible IT artifact: an end-to-end 
system that integrates ML models with XAI 
techniques. This research seeks to answer several 
key questions: How do supervised learning 
models of varying complexity compare on 
imbalanced data when using robust metrics? Can 
model-agnostic XAI techniques like SHAP and 
LIME be effectively integrated into a single 
framework? And how can a practical artifact be 
designed to translate technical explanations into 
intuitive, role-specific interfaces for stakeholders? 

The primary contributions of this work are: 

• The design and implementation of a 
novel, integrated DSR artifact for 
explainable credit scoring, evaluated on 
data from the Zambian market. 

• An empirical demonstration of the 
"Accuracy Paradox" in an imbalanced 

• credit scoring context. 

• A practical blueprint for translating 
technical XAI outputs into stakeholder-
centric interfaces. 

. 
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RELATED WORKS 

The trade-off between model accuracy and 

interpretability is a central theme in applied 

ML [6]. This section reviews how other 

researchers have applied XAI to credit 

scoring and identifies the gaps this research 

aims to fill. 

• Model-Agnostic vs. Model-Specific XAI 

XAI methods can be broadly categorized as 
model-specific or model-agnostic. This research 
focuses on the model-agnostic approach, as its 
flexibility is essential for creating a comparative 
framework that can evaluate a diverse range of 
algorithms, from logistic regression to neural 
networks, without modification. 

• Applications of Explanations in Credit 

Scoring 

Recent literature shows a growing effort to 

apply XAI in credit risk. Bussmann et al. [7] 

and Bracke et al. [8] demonstrated the utility 

of SHAP for interpreting tree-based models 

on credit datasets for both model validation 

and regulatory reporting. Moving beyond 

diagnostics, some research focuses on 

Counterfactual Explanations, which provide 

actionable recourse to consumers by 

explaining "what if" [9]. More recently, 

Nwafor et al. [10] introduced a hybrid 

1DCNN-XGBoost model enhanced with 

SHAP to support fairness without harming 

performance. Similarly, Yadav [11] 

developed a LightGBM-SHAP system for 

real-time, explainable scoring, while Schmitt 

[12] combined AutoML with SHAP to 

advance transparency in automated pipelines. 

Concurrently, Coraglia et al. [13] presented 

BRIO, a model-agnostic tool for 

systematically auditing fairness risks. 

• Gaps in the Literature 

Despite this progress, critical gaps remain. 

Many studies examine a single model or XAI 

technique in isolation, limiting systematic 

comparison. Secondly, XAI outputs are often 

presented in technical formats (e.g., SHAP 

plots, feature tables) that are inaccessible to 

non-technical stakeholders [15]. Finally, 

fairness and explainability are often treated 

separately, though they are deeply linked. 

Our work addresses these gaps by developing 

a single integrated artifact that combines a 

multi-model evaluation pipeline, leading 

XAI methods, fairness metrics [9], and 

stakeholder-centric dashboards [20]. 

METHODOLOGY 

This research adopts the Design Science 
Research (DSR) paradigm [5], which focuses on 
solving practical problems through the creation 
and rigorous evaluation of a novel IT artifact. 
Following this approach, the experiments were 
conducted on a dataset representative of the 
Zambian lending market. To evaluate XAI across 
a spectrum of complexity, six models were 
implemented using Python's Scikit-learn [17], 
TensorFlow [18], and the XGBoost library [2]: 
Logistic Regression, Decision Tree, Random 
Forest, Gradient Boosting, XGBoost, and a Deep 
Neural Network, an archetypal "black box" model 
whose principles are covered in foundational deep 
learning texts [19]. To address the imbalanced 
nature of the data, class weighting was employed 
during training. The core of the artifact involves 
integrating model-agnostic XAI techniques, 
primarily SHAP [20] for feature attribution and 
LIME [21] for localized explanations. The 
artifact's performance was assessed using a multi-
faceted evaluation strategy, focusing on robust 
metrics for imbalanced data such as ROC 
AUC [22] and F1-Score, alongside fairness 
metrics such as Equality of Opportunity [23], 
which can be implemented using toolkits like AI 
Fairness 360 [24]. 

• Datasets and Pre-processing 

The experiments were conducted on a dataset 
representative of the Zambian lending market, 
sourced from a Credit Reference Bureau. To 
demonstrate the framework's fairness capabilities 
without using real sensitive data, synthetic 
demographic attributes were programmatically 
added for the analysis. The pre-processing 
pipeline involved several steps. Missing 
numerical values were imputed using a 'median' 
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strategy, while missing categorical values used a 
'most_frequent' strategy. All categorical features 
were subsequently one-hot encoded, and 
numerical features were standardized using 
a StandardScaler. 

• Machine Learning Models and Class 

Imbalance Handling 

The framework was designed to compare a 

diverse suite of supervised learning models, 

selected to represent a spectrum of 

complexity and inherent interpretability. The 

six models evaluated were: 

• Logistic Regression: An interpretable 

linear model serving as a performance 

baseline. 

• Decision Tree: A transparent, rule-

based model. 

• Random Forest: A bagging-based 

ensemble model known for its 

robustness. 

• Gradient Boosting: A powerful 

boosting-based ensemble model. 

• XGBoost: A highly optimized and 

scalable implementation of gradient 

boosting. 

• Deep Neural Network (DNN): A 

prototypical "black-box" model 

representing the upper end of 

complexity. 

Recognizing that credit scoring datasets are 

typically characterized by high class 

imbalance, specific mitigation techniques 

were applied during training to prevent 

model bias towards the majority (non-

default) class. For models implemented with 

Scikit-learn, this was achieved by setting 

the class_weight='balanced' parameter. For 

the XGBoost model, 

the scale_pos_weight parameter was 

explicitly calculated and applied, assigning a 

higher penalty for misclassifying the 

minority (default) class. 

• Evaluation Metrics 

A multi-faceted evaluation strategy was used. 

1. Technical Performance 
Metrics: Accuracy is misleading on 
imbalanced data. We focused on: 

• ROC AUC: Receiver Operating 
Characteristic (ROC) Area Under the 
Curve (AUC), which measures a model's 
ability to discriminate between classes. 

• F1-Score: The harmonic mean of 
precision and recall, crucial for 
evaluating performance on the minority 
(default) class. 

            F1 = 2 X 
Precision X Recall

Precision+Recall
                        

(1) 

2. Fairness Metrics: To quantify bias, we 
used two established group fairness 
metrics: 

• Demographic Parity Difference 
(DPD): Measures if different groups 
receive positive outcomes at equal rates. 

       DPD=P(Ŷ=1∣A=0)−P(Ŷ=1∣A=1)               
(2) 

Where: 

Ŷ is model prediction (1 = favorable) 

A is sensitive attribute (e.g., 0 = female, 1 = 
male) 

 

• Equal Opportunity Difference 
(EOD): Measures if a model performs 
equally well for different groups among 
the positive class. 

  EoppD =TPRunprivileged −

TPRPrivileged  

Where: 

            TPR = True Positive Rate 

 

THE EXPLAINABLE AI ARTIFACT 

The primary artifact of this research is a 
functional, interactive web-based prototype 
developed using Python and the Streamlit 
framework. As illustrated by the system 
architecture in Fig. 1, the artifact is composed of 
four integrated layers: (1) Data Ingestion & Pre-
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processing, (2) Model Training & Tuning, (3) 
Model Evaluation & XAI Engine, and (4) a 
Presentation & Application Layer. 

 

Fig 1. System architecture of the explainable 
AI framework 

 

• Data Scientist Console 

This view (Fig. 2) is designed for technical 
users for the purpose of model validation, 
debugging, and comparison. It allows for dataset 
upload, pipeline configuration, and model 
training. After execution, it presents a 
comprehensive dashboard 

 (Fig. 3) comparing all models across key 
performance and fairness metrics. It also provides 
global explanations, such as SHAP summary plots 
(Fig. 4), which show the most influential features 
and their impact across the entire dataset. 

Fig. 2. Data Scientist Console for data loading and 
pipeline execution. 

 
Fig. 3. Model Performance Dashboard showing 
comparative results. 

 
Fig. 4. Global feature importance (SHAP) for the 
Random Forest model 
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•  Loan Officer Portal 

This portal allows a business user to input 
applicant data and receive the model's prediction 
along with local explanations via SHAP (Fig. 5) 
and LIME (Fig. 6), clarifying the factors behind 
an individual assessment. 

 

 
Fig. 5. Local explanation (SHAP waterfall plot) 
for a single applicant 

  

Fig. 6. Local explanation (LIME plot) for a single 
applicant. 

 

• Applicant Insights Portal 

This third view serves as a proof-of-concept for 
communicating decisions directly to external 
stakeholders, such as loan applicants. It utilizes an 
interface and explanation visuals similar to those 
in the Loan Officer Portal (as shown in Fig. 5 and 
Fig. 6) but reframes the output for a non-technical 
audience. For instance, it would present a 

simplified assessment (e.g., "Illustrative High 
Risk") and highlight the one or two primary 
factors driving the decision. This demonstrates the 
framework's versatility and provides a direct 
pathway to fulfilling regulatory requirements for 
consumer transparency, empowering individuals 
by providing insight into their automated credit 
assessments. 
 

RESULTS AND DISCUSSIONS  

The models were evaluated on the test set, with 
key results summarized in Table I. 

TABLE I. SUMMARY OF MODEL 
PERFORMANCE METRICS ON THE TEST 
SET 

 

Best performance for each metric is 
highlighted in bold. 

Model Accuracy F1 

(M) 

ROC 

AUC 

Specificity 

Logistic 

Regression 

0.769 0.557 0.614 0.864 

Decision 

Tree 

0.731 0.530 0.636 0.818 

Random 

Forest 

0.846 0.458 0.466 1.000 

Gradient 

Boosting 

0.846 0.458 0.432 1.000 

XGBoost 0.808 0.447 0.511 0.955 

Neural 

Network 

0.846 0.458 0.659 1.000 
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Fig. 7. Receiver Operating Characteristic (ROC) 

Curves for All Models.  

 

The plots show each model's ability to 

discriminate between classes. The dashed line 

represents a random classifier (AUC = 0.5). The 

catastrophic failure of Random Forest and 

Gradient Boosting is visually evident as their 

curves fall below this random baseline. 
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• Analysis of Results 

The results reveal a critical "Accuracy 
Paradox." The most complex models—Random 
Forest, Gradient Boosting, and the Neural 
Network—achieved the highest accuracy (0.846). 
However, this metric is dangerously misleading. 
Table I shows their Specificity is 1.000, meaning 
they achieved this accuracy by classifying every 
single applicant as belonging to the majority (non-
default) class. This renders them practically 
useless for risk management, a failure confirmed 
by their poor F1-Scores. 

• Complete Model Failure (Random Forest 
& Gradient Boosting): These ensemble 
models represent a catastrophic failure. 
Their ROC AUC scores of 0.466 and 
0.432, respectively, fall below the 
random guess baseline (0.5), 
demonstrating they have less 
discriminative power than a coin flip. 

• The Interpretable Baseline (Logistic 
Regression): In stark contrast, the simpler 
Logistic Regression model, despite a 
lower accuracy, proved to be the most 
practically useful model. It achieved the 
highest F1-Score (0.557), indicating a 
balanced performance. 

• The Model with Highest Potential 
(Neural Network): The Neural Network 
presents an interesting case. While its F1-
Score is low due to the same thresholding 
issue, it achieved the highest ROC AUC 
(0.659). This indicates that the model is 

superior at ranking applicants by risk, 
even if the default decision threshold is 
incorrect. With proper threshold tuning, 
this model has the highest potential. 

• The Role of XAI in Model Diagnostics 

The XAI framework proved essential for 
diagnosing this failure. While global SHAP plots 
(Fig. 4) confirmed that complex models were 
relying on logically relevant features (e.g., interest 
rate, debt-to-income), the local explanations were 
more revealing. By examining the SHAP values 
for misclassified default instances, it became clear 
that the models' strong bias towards the majority 
class was consistently overpowering the evidence 
from risk-indicating features. This demonstrates 
that XAI is not just a tool for explaining correct 
decisions but is a powerful and indispensable 
utility for debugging model behavior. 

• Illustrative Fairness Analysis 

The framework's fairness module enabled 
analysis of the models' performance across 
demographic subgroups. For the Random Forest 
model, an illustrative DPD of -0.05 between 
'Male' and 'Female' groups would indicate that 
female applicants were 5% less likely to receive a 
favorable outcome than male applicants. Such 
quantitative insights are vital for auditing models 
for discriminatory behavior and ensuring ethical 
alignment. 

• Implications for Practice and Regulation 

       This work offers a practical blueprint for 
financial institutions in Zambia to build more 
transparent AI systems and navigate local 
regulations. The local explanations generated by 
the framework (Fig. 5) can directly furnish the 
"principal reasons" for adverse decisions, aligning 
with disclosure requirements in the Credit 
Reporting Act, No. 8 of 2018. Furthermore, by 
making automated decision-making transparent, 
the framework supports the principles of fairness 
required by the Data Protection Act, No. 3 of 
2021. This provides a concrete pathway toward 
regulatory compliance and enables the rigorous 
fairness analysis and bias detection essential for 
responsible lending [15]. 

• Limitations 

          This research has several limitations that 
should be acknowledged. The findings are 

Fig. 8. Precision-Recall (PR) Curves for All 

Models. 

 

 

 The plots show the trade-off between 

precision and recall for the minority 

(default) class. The low Average Precision 

(AP) scores for Random Forest and 

Gradient Boosting confirm their inability to 

effectively identify defaulters, while the 

Neural Network shows the strongest 

potential. 
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based on a single public dataset with synthetic 
demographics, so the specific fairness results 
are illustrative. The prototype has not yet 
undergone formal user-centric evaluation with 
real-world stakeholders in Zambia. 
Additionally, the XAI methods themselves 
have known technical limitations; for instance, 
LIME explanations can be unstable in some 
cases, and SHAP can be computationally 
expensive for non-tree-based models. These 
factors must be carefully considered for 
production deployment 

 

CONCLUSION 

This paper presented the design and evaluation 
of an integrated framework to demystify 'black-
box' credit scoring models, constructed within a 
rigorous Design Science Research (DSR) 
methodology. Our findings empirically 
demonstrate that accuracy is a dangerously 
misleading metric in imbalanced domains and 
establish that XAI is not merely an explanatory 
tool but an indispensable utility for diagnosing 
catastrophic model failures and ensuring 
transparency. The resulting artifact offers a 
concrete pathway for financial institutions in 
Zambia to align with pressing regulatory 
mandates for disclosure and fairness by delivering 
role-specific, interpretable explanations. 

Building on this foundation, future research 
will advance along three primary avenues: first, 
by integrating proactive bias mitigation 
techniques to move from detection to correction; 
second, by conducting formal stakeholder user 
studies to validate the artifact's real-world utility 
and usability; and finally, by developing natural-
language generation capabilities to produce 
explanations that are fully compliant with 
consumer protection regulations. 
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