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Abstract— Advanced machine learning models offer
superior accuracy in credit scoring, but their "black
box" nature hinders regulatory compliance and erodes
trust. This paper addresses this challenge by presenting
a hybrid framework, developed using a Design Science
Research (DSR) methodology, to integrate model-
agnostic Explainable AI (XAI) into the credit scoring
pipeline. The framework applies leading XAl techniques,
specifically SHAP and LIME, to a range of supervised
learning models. A functional, interactive prototype was
developed and tested using credit data from the Zambian
market. Experimental results revealed a stark
"Accuracy Paradox": models with the highest accuracy
(84.6%) achieved a perfect specificity of 1.000 by never
predicting the minority class, resulting in an F1-Score of
only 0.458 and an ROC AUC worse than a random guess
(as low as 0.432). XAI techniques proved crucial for
diagnosing these failures and providing clear, feature-
based explanations for individual loan decisions. This
research contributes a practical, integrated artifact that
systematically compares multiple models and
explanation methods, bridging the gap between complex
ML implementation and the pressing need for fair,
transparent, and accountable financial decision-making.

Keywords— Credit Scoring, Explainable AI (XAl),
SHAP, LIME, Algorithmic Fairness, Machine Learning,
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INTRODUCTION

Credit scoring is a cornerstone of modern
financial services. The drive for higher predictive
accuracy has led to the adoption of complex
machine learning (ML) models, such as Random
Forests [1] and Gradient Boosting Machines [2],
which are extensively detailed in foundational
texts like The Elements of  Statistical
Learning [3]. While powerful, these models often
operate as opaque "black boxes," creating critical
problems with severe consequences, including

e credit scoring context.

e A practical blueprint for translating
technical XAl outputs into stakeholder-
centric interfaces.
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significant financial losses, reputational damage,
and direct legal risks.

This opacity creates a direct conflict with
regulatory mandates. In the Zambian context, the
Data Protection Act, No. 3 of 2021, requires
fairness in automated processing, while the Credit
Reporting Act, No. 8 of 2018, mandates that
consumers receive the principal reasons for
adverse credit actions. The inscrutable nature of
black-box models makes compliance a significant
challenge.

To address this, the field of Explainable Al
(XAI) offers techniques to demystify ML
models [4]. This paper leverages a Design Science
Research (DSR) methodology [5] to create and
evaluate a tangible IT artifact: an end-to-end
system that integrates ML models with XAI
techniques. This research seeks to answer several
key questions: How do supervised learning
models of varying complexity compare on
imbalanced data when using robust metrics? Can
model-agnostic XAl techniques like SHAP and
LIME be effectively integrated into a single
framework? And how can a practical artifact be
designed to translate technical explanations into
intuitive, role-specific interfaces for stakeholders?

The primary contributions of this work are:

e The design and implementation of a
novel, integrated DSR artifact for
explainable credit scoring, evaluated on
data from the Zambian market.

e An empirical demonstration of the
"Accuracy Paradox" in an imbalanced
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RELATED WORKS

The trade-off between model accuracy and
interpretability is a central theme in applied
ML [6]. This section reviews how other
researchers have applied XAl to credit
scoring and identifies the gaps this research
aims to fill.

o Model-Agnostic vs. Model-Specific XAl

XAI methods can be broadly categorized as
model-specific or model-agnostic. This research
focuses on the model-agnostic approach, as its
flexibility is essential for creating a comparative
framework that can evaluate a diverse range of
algorithms, from logistic regression to neural
networks, without modification.

e Applications of Explanations in Credit
Scoring

Recent literature shows a growing effort to
apply XAl in credit risk. Bussmann et al. [7]
and Bracke et al. [8] demonstrated the utility
of SHAP for interpreting tree-based models
on credit datasets for both model validation
and regulatory reporting. Moving beyond
diagnostics, some research focuses on
Counterfactual Explanations, which provide
actionable recourse to consumers by
explaining "what if" [9]. More recently,
Nwafor et al. [10] introduced a hybrid
IDCNN-XGBoost model enhanced with
SHAP to support fairness without harming
performance.  Similarly, Yadav [I11]
developed a LightGBM-SHAP system for
real-time, explainable scoring, while Schmitt
[12] combined AutoML with SHAP to
advance transparency in automated pipelines.
Concurrently, Coraglia et al. [13] presented
BRIO, a model-agnostic  tool  for
systematically auditing fairness risks.

e Gaps in the Literature
Despite this progress, critical gaps remain.
Many studies examine a single model or XAl

technique in isolation, limiting systematic
comparison. Secondly, XAl outputs are often
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presented in technical formats (e.g., SHAP
plots, feature tables) that are inaccessible to
non-technical stakeholders [15]. Finally,
fairness and explainability are often treated
separately, though they are deeply linked.
Our work addresses these gaps by developing
a single integrated artifact that combines a
multi-model evaluation pipeline, leading
XAI methods, fairness metrics [9], and
stakeholder-centric dashboards [20].

METHODOLOGY

This research adopts the Design Science
Research (DSR) paradigm [5], which focuses on
solving practical problems through the creation
and rigorous evaluation of a novel IT artifact.
Following this approach, the experiments were
conducted on a dataset representative of the
Zambian lending market. To evaluate XAl across
a spectrum of complexity, six models were
implemented using Python's Scikit-learn [17],
TensorFlow [18], and the XGBoost library [2]:
Logistic Regression, Decision Tree, Random
Forest, Gradient Boosting, XGBoost, and a Deep
Neural Network, an archetypal "black box" model
whose principles are covered in foundational deep
learning texts [19]. To address the imbalanced
nature of the data, class weighting was employed
during training. The core of the artifact involves
integrating model-agnostic XAI techniques,
primarily SHAP [20] for feature attribution and
LIME [21] for localized explanations. The
artifact's performance was assessed using a multi-
faceted evaluation strategy, focusing on robust
metrics for imbalanced data such as ROC
AUC [22]and F1-Score, alongside fairness
metrics such as Equality of Opportunity [23],
which can be implemented using toolkits like Al
Fairness 360 [24].

e Datasets and Pre-processing

The experiments were conducted on a dataset
representative of the Zambian lending market,
sourced from a Credit Reference Bureau. To
demonstrate the framework's fairness capabilities
without using real sensitive data, synthetic
demographic attributes were programmatically
added for the analysis. The pre-processing
pipeline involved several steps. Missing
numerical values were imputed using a 'median’
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strategy, while missing categorical values used a
'most_frequent' strategy. All categorical features
were subsequently one-hot encoded, and
numerical features were standardized using
a StandardScaler.

o Machine Learning Models and Class
Imbalance Handling

The framework was designed to compare a
diverse suite of supervised learning models,
selected to represent a spectrum of
complexity and inherent interpretability. The
six models evaluated were:

o Logistic Regression: An interpretable
linear model serving as a performance
baseline.

e Decision Tree: A transparent, rule-
based model.

e Random Forest: A bagging-based
ensemble model known for its
robustness.

e Gradient Boosting: A powerful
boosting-based ensemble model.

e XGBoost: A highly optimized and
scalable implementation of gradient
boosting.

e Deep Neural Network (DNN): A
prototypical  "black-box"  model
representing the upper end of
complexity.

Recognizing that credit scoring datasets are
typically characterized by high class
imbalance, specific mitigation techniques
were applied during training to prevent
model bias towards the majority (non-
default) class. For models implemented with
Scikit-learn, this was achieved by setting
the class_weight="balanced' parameter. For
the XGBoost model,
the scale pos weight parameter was
explicitly calculated and applied, assigning a
higher penalty for misclassifying the
minority (default) class.

o Evaluation Metrics
A multi-faceted evaluation strategy was used.
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1. Technical Performance
Metrics: Accuracy is misleading on
imbalanced data. We focused on:

¢ ROC AUC: Receiver Operating
Characteristic (ROC) Area Under the
Curve (AUC), which measures a model's
ability to discriminate between classes.

e FI1-Score: The harmonic mean of
precision and recall, crucial for
evaluating performance on the minority
(default) class.

Precision X Recall
F1=2X —/—MmM8M8Mmm

Precision+Recall

(M

2. Fairness Metrics: To quantify bias, we
used two established group fairness
metrics:

e Demographic Parity Difference
(DPD): Measures if different groups
receive positive outcomes at equal rates.

DPD=P(Y=1|A=0)-P(Y=1|A=1)
)
Where:
Y is model prediction (1 = favorable)

A is sensitive attribute (e.g., 0 = female, 1 =
male)

e Equal Opportunity Difference
(EOD): Measures if a model performs
equally well for different groups among
the positive class.

EoppD =TPRunprivileged —
TpRPrivileged
Where:
TPR = True Positive Rate

THE EXPLAINABLE AI ARTIFACT

The primary artifact of this research is a
functional, interactive web-based prototype
developed using Python and the Streamlit
framework. As illustrated by the system
architecture in Fig. 1, the artifact is composed of
four integrated layers: (1) Data Ingestion & Pre-
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processing, (2) Model Training & Tuning, (3)
Model Evaluation & XAI Engine, and (4) a
Presentation & Application Layer.

Layer 1 Preprocesssing | (
Data Ingestion & Raw Data [— Pipeline 1
Preprocessing ( (emputation) Sccaing)

(Com )
Layer 2 » Model Hyperparameter| » Evaluaton
Model Training Registry i Report
& Tuning Tunin e

r v
| Mode! Trainer
S

Data
||| scientist
> [_Console |

Layer 3 5 || Performance
Model Evaluation vedictions Metrics

Fairness Metrics

——————
Layer4 SHAP Explanations +
Explainaibility LIME Visualizations |

(XAl) Engine g

Loan
Officer
Portal

[ Appiicant |
insights
Portal

—

Presentation &
Application Layer

Fig 1. System architecture of the explainable
Al framework

e Data Scientist Console

This view (Fig. 2) is designed for technical
users for the purpose of model validation,
debugging, and comparison. It allows for dataset
upload, pipeline configuration, and model
training. After execution, it presents a
comprehensive dashboard

(Fig. 3) comparing all models across key
performance and fairness metrics. It also provides
global explanations, such as SHAP summary plots
(Fig. 4), which show the most influential features
and their impact across the entire dataset.
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Fig. 2. Data Scientist Console for data loading and
pipeline execution.

et ing [ Model Performance & Data Insights Dashboard

Overall Model Performance Comparisan

Fig. 3. Model Performance Dashboard showing
comparative results.

Lull Model Performance & Data Insights Dashboard

Global Model Feature Impertance

Fig. 4. Global feature importance (SHAP) for the
Random Forest model
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e Loan Officer Portal

This portal allows a business user to input
applicant data and receive the model's prediction
along with local explanations via SHAP (Fig. 5)
and LIME (Fig. 6), clarifying the factors behind
an individual assessment.

Fig. 5. Local explanation (SHAP waterfall plot)
for a single applicant

Local explanation for class [

num__num_collections_last_12m <= -0.11 -
num__tax_liens <= -0,11
num__num_accounts_120d_past_due > 0.00 -
num__total_collection_amount_ever <= -0,15
num__num_historical_failed_to_pay <= -0.38
num__public_record_bankrupt <= -0.36 4
num__months_since_90d_late <= 0.09
num__months_since_last_credit_inquiry > 0.57

cat__loan_purpose_zm_Home Renovation <= 0.00

Fig. 6. Local explanation (LIME plot) for a single
applicant.

o Applicant Insights Portal

This third view serves as a proof-of-concept for
communicating decisions directly to external
stakeholders, such as loan applicants. It utilizes an
interface and explanation visuals similar to those
in the Loan Officer Portal (as shown in Fig. 5 and
Fig. 6) but reframes the output for a non-technical
audience. For instance, it would present a

simplified assessment (e.g., "lllustrative High
Risk") and highlight the one or two primary
factors driving the decision. This demonstrates the
framework's versatility and provides a direct
pathway to fulfilling regulatory requirements for
consumer transparency, empowering individuals
by providing insight into their automated credit
assessments.

RESULTS AND DISCUSSIONS

The models were evaluated on the test set, with
key results summarized in Table 1.

TABLE 1. SUMMARY OF MODEL
PERFORMANCE METRICS ON THE TEST
SET

M) | AUC

Model Accuracy | F1 | ROC | Specificity

Regression

Logistic 0.769 0.557 | 0.614 0.864

Tree

Decision 0.731 0.530 | 0.636 0.818

Forest

Random 0.846 0.458 | 0.466 1.000

Boosting

Gradient 0.846 0.458 | 0.432 1.000

XGBoost 0.808 0.447 | 0.511 0.955

Best  performance for each metric s
highlighted in bold.
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Logistic Regression (AUC = 0.614)

ROC Curve - Lagistic Regression

Random Forest (AUC = 0.466)

ROC Curve - Random Forest

XGBoost (AUC = 0.511)

ROC Curve - ¥GBoost

RGC Curve -Dexision Tree

ROC Curve - Gratient Bossting

urve - Neural Netwark

Decision Tree (AUC = 0.636)

Gradient Boosting (AUC = 0.432)

Neural Network (AUC = 0.659)

Logistic Regression (AP = 0.284)

Precision-Recal Carve- Logistic Regresion

Random Forest (AP = 0.166)

Precision-Recall Curve - Random Forest

XGBoost (AP = 0.179)

Precigion Recall Corve - XGBoost

Decision Tree (AP = 0.210)
Precision-Recall Curve - Decision Tree

Gradient Boosting (AP = 0.153)

Precision-Reca Curve - Gradient Bosting

Neural Network (AP = 0.352)

Precision-Recall Curve - Neural Netwark

Fig. 7. Receiver Operating Characteristic (ROC)

Curves for All Models.

The plots show each model's ability to
discriminate between classes. The dashed line
represents a random classifier (AUC = 0.5). The
catastrophic failure of Random Forest and
Gradient Boosting is visually evident as their
curves fall below this random baseline.
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Fig. 8. Precision-Recall (PR) Curves for All
Models.

The plots show the trade-off between
precision and recall for the minority
(default) class. The low Average Precision
(AP) scores for Random Forest and
Gradient Boosting confirm their inability to
effectively identify defaulters, while the
Neural Network shows the strongest
potential.

e Analysis of Results

The results reveal a critical "Accuracy
Paradox." The most complex models—Random
Forest, Gradient Boosting, and the Neural
Network—achieved the highest accuracy (0.846).
However, this metric is dangerously misleading.
Table I shows their Specificity is 1.000, meaning
they achieved this accuracy by classifying every
single applicant as belonging to the majority (non-
default) class. This renders them practically
useless for risk management, a failure confirmed
by their poor F1-Scores.

e Complete Model Failure (Random Forest
& Gradient Boosting): These ensemble
models represent a catastrophic failure.
Their ROC AUC scores of 0.466 and
0.432, respectively, fall below the
random guess baseline (0.5),
demonstrating they have less
discriminative power than a coin flip.

e The Interpretable Baseline (Logistic
Regression): In stark contrast, the simpler
Logistic Regression model, despite a
lower accuracy, proved to be the most
practically useful model. It achieved the
highest F1-Score (0.557), indicating a
balanced performance.

e The Model with Highest Potential
(Neural Network): The Neural Network
presents an interesting case. While its F1-
Score is low due to the same thresholding
issue, it achieved the highest ROC AUC
(0.659). This indicates that the model is
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superior at ranking applicants by risk,
even if the default decision threshold is
incorrect. With proper threshold tuning,
this model has the highest potential.

e The Role of XAl in Model Diagnostics

The XAI framework proved essential for
diagnosing this failure. While global SHAP plots
(Fig. 4) confirmed that complex models were
relying on logically relevant features (e.g., interest
rate, debt-to-income), the local explanations were
more revealing. By examining the SHAP values
for misclassified default instances, it became clear
that the models' strong bias towards the majority
class was consistently overpowering the evidence
from risk-indicating features. This demonstrates
that XAl is not just a tool for explaining correct
decisions but is a powerful and indispensable
utility for debugging model behavior.

o Jllustrative Fairness Analysis

The framework's fairness module enabled
analysis of the models' performance across
demographic subgroups. For the Random Forest
model, an illustrative DPD of -0.05 between
'Male' and 'Female' groups would indicate that
female applicants were 5% less likely to receive a
favorable outcome than male applicants. Such
quantitative insights are vital for auditing models
for discriminatory behavior and ensuring ethical
alignment.

e [mplications for Practice and Regulation

This work offers a practical blueprint for
financial institutions in Zambia to build more
transparent Al systems and navigate local
regulations. The local explanations generated by
the framework (Fig. 5) can directly furnish the
"principal reasons" for adverse decisions, aligning
with disclosure requirements in the Credit
Reporting Act, No. 8 of 2018. Furthermore, by
making automated decision-making transparent,
the framework supports the principles of fairness
required by the Data Protection Act, No. 3 of
2021. This provides a concrete pathway toward
regulatory compliance and enables the rigorous
fairness analysis and bias detection essential for
responsible lending [15].

e Limitations

This research has several limitations that
should be acknowledged. The findings are
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based on a single public dataset with synthetic
demographics, so the specific fairness results
are illustrative. The prototype has not yet
undergone formal user-centric evaluation with
real-world  stakeholders in  Zambia.
Additionally, the XAI methods themselves
have known technical limitations; for instance,
LIME explanations can be unstable in some
cases, and SHAP can be computationally
expensive for non-tree-based models. These
factors must be carefully considered for
production deployment

CONCLUSION

This paper presented the design and evaluation
of an integrated framework to demystify 'black-
box' credit scoring models, constructed within a
rigorous Design Science Research (DSR)
methodology. Our  findings  empirically
demonstrate that accuracy is a dangerously
misleading metric in imbalanced domains and
establish that XAl is not merely an explanatory
tool but an indispensable utility for diagnosing
catastrophic model failures and ensuring
transparency. The resulting artifact offers a
concrete pathway for financial institutions in
Zambia to align with pressing regulatory
mandates for disclosure and fairness by delivering
role-specific, interpretable explanations.

Building on this foundation, future research
will advance along three primary avenues: first,
by integrating proactive bias mitigation
techniques to move from detection to correction;
second, by conducting formal stakeholder user
studies to validate the artifact's real-world utility
and usability; and finally, by developing natural-
language generation capabilities to produce
explanations that are fully compliant with
consumer protection regulations.
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