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Abstract

Rapid urbanization in developing cities has
intensified road congestion, increased travel
delays, and elevated carbon emissions,
underscoring the need for intelligent and adaptive
traffic control systems. This study presents the
design and evaluation of an Internet of Things
(IoT) and Artificial Intelligence (AI) - based traffic
management framework developed for urban
intersections in Lusaka, Zambia. The proposed
system integrates ESP32-based sensor networks
for real-time vehicular data acquisition, a cloud-
driven processing infrastructure (Firebase), and a
locally hosted AI engine employing a Random
Forest Regressor for adaptive signal optimization.
The system supports both automated and manual
traffic control through a responsive Next.js
dashboard with a latency below two seconds.
Experimental simulations across three
intersections revealed a 44% reduction in average
vehicle waiting time, a 27% improvement in
throughput, and a 27% decrease in estimated fuel
consumption. These findings demonstrate the
framework’s capacity to enhance mobility
efficiency, reduce congestion-related emissions,
and promote sustainable urban transport. The
paper contributes a scalable, low-cost, and context-
aware smart traffic management model adaptable
to the infrastructure realities of developing cities.
All experiments were conducted in a hardware-in-
the-loop simulation environment using benchtop
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signal heads; no on-road trials with live vehicle
traffic were performed.
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I. INTRODUCTION

The rapid pace of urbanization in developing nations
has dramatically increased vehicular density, road
congestion, and travel delays, creating a critical
demand for intelligent transportation infrastructure. In
cities such as Lusaka, Zambia, inefficient traffic
control systems based on static or time-of-day
scheduling are unable to accommodate fluctuating
traffic volumes. These legacy systems contribute to
extended waiting times, unnecessary idling, and
elevated carbon emissions, ultimately reducing
economic productivity and environmental quality. The
World Bank estimates that traffic congestion in Sub-
Saharan African cities accounts for productivity losses
equivalent to 2-3 % of GDP annually, underscoring
the urgency for adaptive mobility solutions [1].

The integration of the Internet of Things (IoT) and
Artificial Intelligence (AI) has emerged as a
transformative  approach to urban mobility
management. IoT technology enables continuous
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sensing of real-time traffic data through networked
devices that monitor vehicle density, speed, and flow.
When combined with Al algorithms such as machine
learning or deep neural networks, these data streams
can be processed to predict congestion patterns and
dynamically optimize traffic signal operations. Recent
research demonstrates that Al-driven adaptive control
can reduce travel time by more than 30 % in high-
density intersections [2], [3]. Such systems have been
successfully implemented in technologically advanced
cities such as Singapore, Hangzhou, and Barcelona,
where data-driven traffic management has improved
flow efficiency and emergency response times [4].

However, most existing systems are designed for high-
infrastructure contexts, often requiring costly sensors,
high-bandwidth networks, and proprietary control
software. In contrast, low- and middle-income
countries face challenges of limited funding,
inconsistent connectivity, and inadequate data
infrastructure. This technological and contextual gap
necessitates the development of cost-effective,
scalable, and context-aware traffic management
solutions tailored to the realities of developing cities

(31, [6].

To address these challenges, this paper presents an loT
and Al-based adaptive traffic management framework
that leverages low-cost ESP32 microcontrollers,
cloud-based data processing, and a locally hosted Al
engine using a Random Forest Regressor for real-time
signal  optimization.  The  system  operates
autonomously or under manual supervision through an
interactive web dashboard, providing near-real-time
control and analytics. The model was piloted in
Lusaka under simulated conditions to evaluate
performance in terms of latency, throughput, and
energy efficiency.

II. LITERATURE REVIEW
A. Overview

The accelerating adoption of Internet of Things (IoT)
and Artificial Intelligence (AI) technologies has
redefined approaches to urban mobility and traffic
management across the world. Traditional traffic
systems, which rely on static signal schedules or
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manual control, have proven insufficient for modern
urban environments where traffic patterns are dynamic
and unpredictable. Static systems lack responsiveness
to real-time variations in vehicle density, resulting in
inefficiencies such as prolonged waiting times, fuel
wastage, and elevated greenhouse gas emissions.
Emerging smart traffic management systems (STMS)
harness IoT-enabled data collection and Al-based
analytics to optimize signal timings dynamically,
thereby reducing congestion and improving road
safety [7], [10].

B. IoT-Enabled Traffic Monitoring Systems

IoT serves as the foundational layer of intelligent
transportation, facilitating real-time monitoring
through interconnected sensors, microcontrollers, and
wireless networks. Studies have shown that IoT-based
monitoring systems employing sensors such as
inductive loops, infrared cameras, and radar can
provide granular, continuous data on traffic flow,
vehicle count, and lane occupancy [3]. For instance,
Al-Turjman et al. [4] demonstrated that hybrid IoT
frameworks  integrating  vehicular  networks
(VANETs) and cloud computing architectures
significantly enhance data reliability and latency
performance for traffic control applications.

Recent work in Zambia and other Sub-Saharan regions
underscores the feasibility of deploying low-cost IoT
modules like ESP32 and Raspberry Pi for real-time
vehicular monitoring. Halubanza et al. [S] proposed a
low-cost IoT-based automated locust monitoring
system using embedded sensors and cloud integration,
highlighting similar design principles applicable to
urban traffic systems. These architectures not only
minimize implementation costs but also ensure
scalability and adaptability to localized infrastructural
constraints.

C. Al for Adaptive Traffic Signal Control

Al algorithms, particularly machine learning (ML) and
deep learning (DL) models, are now central to
intelligent traffic control. Reinforcement learning
(RL) and regression-based models have been
successfully applied to optimize signal cycles based on
predicted traffic densities. Li et al. [6] used deep
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reinforcement learning to dynamically control
intersections in Hangzhou, achieving up to 35%
reduction in travel delays. Similarly, MobileNet and
Random Forest models have been leveraged for real-
time classification and decision-making in edge
computing environments, offering faster adaptation to
traffic fluctuations [7], [8].

In developing contexts, where computational
resources and connectivity are constrained,
lightweight Al models such as Random Forest
Regressors and Decision Trees have proven effective
due to their interpretability and low computational
overhead [9]. The present study aligns with these
advancements by employing a Random Forest model
locally hosted to predict optimal signal durations using
real-time input variables such as vehicle density, lane
flow, and time of day.

D. Comparative Analysis of Existing Systems

Conventional fixed-time control systems are
characterized by low scalability and inefficiency
during varying traffic conditions. Adaptive systems
such as Sydney Coordinated Adaptive Traffic System
(SCATS) and Split Cycle Offset Optimization
Technique (SCOOT) have achieved improvements in
developed countries but remain too costly and
infrastructure-dependent for developing nations [10].
IoT- and Al-based systems, by contrast, combine
flexibility with cost-effectiveness. Halubanza et al.
[11] demonstrated in their Zambia ICT Journal study
that data-driven signal optimization can reduce
congestion-related emissions while maintaining
throughput in resource-limited settings.

Comparative evaluations (Table I) reveal that [oT- and
Al-enabled systems offer higher scalability, lower
operational cost, and full real-time adaptability
compared to fixed-timing and partially adaptive
systems.

Table I: Comparative Features of Traffic Management
Systems
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Feature Fixed- Adaptive IoT & AI-
Timing Systems Based
Systems Systems

Scalability Low Medium High

Cost Efficiency Low Medium High

Real-Time None Partial Full

Adaptation

Infrastructure High High Low

Demand

Suitability ~ for | Poor Moderate Excellent

Developing

Cities

(Source: Compiled from [3], [6], [10], [11])

E. Identified Research Gaps

Despite the evident benefits, existing loT-based traffic
systems face key limitations. Many rely on high-cost
sensing  units, centralized architectures, and
continuous internet connectivity, which limit
deployment in bandwidth-constrained environments
[12].  Furthermore, issues of cybersecurity,
interoperability, and data privacy persist, as identified
in several recent studies [13]. There remains a gap in
developing context-specific, low-cost, and scalable
IoT-AI traffic control models designed for African
cities where infrastructure and connectivity are
inconsistent. The proposed system addresses these
challenges by integrating lightweight edge
computation, low-cost ESP32 sensors, and modular
cloud support to deliver adaptive, real-time traffic
optimization with minimal infrastructure
requirements.

III. RESEARCH METHODOLOGY
A. Overview of Methodological Approach

The research employed the Waterfall development
methodology, a sequential design framework that
divides the system development life cycle into distinct
and logically ordered phases, requirements analysis,
system design, implementation, testing, and
deployment. This structured approach was selected for
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its suitability in projects with well-defined objectives
and predictable deliverables. Unlike iterative
methodologies such as Agile, which rely on
continuous feedback loops, the Waterfall model
ensures systematic progression, traceability, and
accountability in academic and prototype-oriented
system development [17], [18], [19].

This methodology aligns with best practices in
embedded systems and IoT-based research, where
hardware and software integration require clear stage-
by-stage documentation and evaluation [3].
Furthermore, adherence to IEEE software engineering
standards (IEEE 1074-2022) ensures that each phase
maintains consistency, testability, and design
validation [20].

B. Methodological Framework

The framework (Fig. 1) illustrates the five key phases
applied in the project development cycle, each
ensuring controlled progression and quality validation
before proceeding to the next phase.

1) Requirements Analysis

In this phase, all functional and non-functional
requirements were collected through stakeholder
consultations with municipal traffic authorities and
academic experts. Requirements included low-cost
IoT deployment, real-time signal optimization,
scalability, and cloud interoperability. The outcome
was a Software Requirements Specification (SRS)
document, serving as a baseline for design and
evaluation.

Scope of evaluation. The prototype was validated
using controlled simulations and bench hardware
(ESP32 nodes, relay-driven LEDs) rather than in-situ
intersections. The objective was to de-risk architecture
and control logic prior to field pilots.

2) System and Software Design
The system architecture was designed around an
ESP32-based IoT sensing layer, a cloud infrastructure
using Firebase, and an Al-driven decision-making
engine built using a locally hosted Random Forest
Regressor. System modeling tools such as Unified
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Modeling Language (UML) and Entity Relationship
Diagrams (ERD) were used to define data flow and
interaction between modules. This phase emphasized
modularity, ensuring each system component—data
acquisition, Al prediction, and actuation—could be
developed and tested independently.

3) Implementation and Unit Testing
Each software and hardware module was implemented
and subjected to unit testing using both simulation and
real-world data. Python (for AI logic), C++ (for
microcontroller programming), and JavaScript (for the
Next.js dashboard) were employed as development
environments. Testing protocols included sensor
calibration, cloud communication validation via
MQTT, and Al inference benchmarking to verify
latency and prediction accuracy.

4) Integration and System Testing
Once individual modules passed unit testing, they
were integrated into the complete system. System
testing assessed real-time data transmission reliability,
dashboard responsiveness, and the accuracy of Al-
based signal decisions. Key metrics included latency
(target < 2 seconds), signal adjustment precision, and
throughput improvements. Data collected during
simulation phases were analyzed statistically to
validate system performance improvements.

5) Operation and Maintenance
After successful integration, the system was deployed
in a simulated environment reflecting real-world
intersection  conditions. This phase involved
continuous monitoring, performance logging, and
corrective updates to refine model predictions. The
maintenance phase also ensured sustainability by
allowing iterative Al model retraining as new traffic
data became available.

C. Justification for Methodology Selection

The Waterfall model was chosen for three main
reasons: structure, predictability, and documentation
rigor.

First, the project required predefined deliverables such
as hardware prototypes and Al models that benefited
from  Waterfall’s  sequential  control  and
comprehensive documentation [21]. Second, the
methodology allows detailed testing and validation at
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each stage, ensuring early detection of integration
issues. Finally, in the context of academic research and
prototyping, Waterfall facilitates replication and
external validation, which are critical for scholarly
publication and peer review [18].

Moreover, similar smart city and IoT projects, such as
real-time health monitoring [22] and smart energy
metering [23] have employed the Waterfall model
successfully, achieving reduced integration errors and
high reproducibility. Thus, its application here is
justified by its alignment with both system complexity
and research transparency requirements.

D. Technologies and Frameworks Used

To ensure robustness and interoperability, the system
integrated several key technologies, summarized
below:

Componen | Technology/Fra | Function

t mework

IoT ESP32 Real-time

Hardware | Microcontroller data
acquisition
from
Sensors

Cloud Firebase (Google | Data

Platform Cloud) storage,
real-time
communic
ation

Al Model | Random  Forest | Predict

Regressor optimal

signal
durations

Programmi | Python, C++, | Al

ng JavaScript embedded

Languages | (Next.js) control,
and user
interface
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Communic | MQTT over TLS | Secure
ation data
Protocol transmissi
on
between
nodes
Visualizati | Next.js Web | Live traffic
on Dashboard visualizati
on and
control

The integration of these technologies ensures that the
system achieves low-latency decision-making, fault
tolerance, and scalability. Furthermore, employing
lightweight computation at the edge minimizes
network dependence, enabling sustained operation
under variable connectivity conditions [9], [10].

IV. SYSTEM ANALYSIS AND DESIGN
A. Overview

The proposed IoT-based intelligent traffic
management system integrates hardware and software
components to collect, analyze, and act upon real-time
vehicular data for adaptive signal control. The design
follows a modular and layered architecture comprising
four core components: sensing, communication,
processing, and actuation layers. Each layer is
engineered to ensure interoperability, scalability, and
low-latency decision-making suitable for urban
conditions in developing contexts such as Lusaka,
Zambia.

B. System Requirements Analysis

The system requirements were categorized into
functional and non-functional elements to ensure
technical completeness and operational sustainability.

1) Functional Requirements

Real-time collection of traffic data from ESP32
Sensors.
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Al-driven prediction of optimal signal timings using a
Random Forest Regressor.

Automated and manual control modes for adaptive
signal switching.

Centralized web-based dashboard for visualization
and monitoring.

Logging and analytics module for traffic trends and
performance evaluation.

2) Non-Functional Requirements:
Reliability: 99% uptime with data redundancy.

Scalability: Modular  architecture for multi-
intersection integration.

Security: AES-256 encryption and MQTT with TLS
for data transmission.

Maintainability: Modular code structure and clear
documentation.

Latency: End-to-end response time below two
seconds.

These requirements were derived from user-centered
needs assessments and benchmarked against
performance metrics in smart mobility systems
reported in IEEE Access and IoT Journal between
2021 and 2025 [2], [10], [15].

C. System Architecture

The architecture (Fig. 1) consists of four hierarchical
layers that interact seamlessly to enable continuous
data acquisition, intelligent decision-making, and
traffic signal actuation.
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Fig. 1. System architecture

Figure 1 depicts the four-layer model comprising
sensing, communication, processing, and actuation
layers connected via secure MQTT channels.

Sensing Layer

Comprises ESP32 microcontrollers equipped
with infrared and ultrasonic sensors for
vehicle detection. These devices capture lane
density, speed, and vehicle count data at
regular intervals (every 2 seconds).

Communication Layer

Facilitates data exchange through MQTT
protocol with TLS encryption to ensure
reliability and low bandwidth consumption.
The data are transmitted to the Firebase cloud
for aggregation and preprocessing.

Processing Layer

Houses the Al logic implemented using a
Random Forest Regressor within a local
Next.js application. The Al predicts optimal
green light durations based on multi-variable
inputs such as vehicle count, time of day, and
historical congestion data.

Actuation Layer

Uses microcontroller-based relay systems to
adjust signal states (green, yellow, red) in
real-time. Feedback from the actuation layer
is logged for performance analytics and Al
retraining.
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This distributed design minimizes computational
latency and enhances reliability under fluctuating
network conditions, aligning with modern edge-
computing principles for IoT systems [15], [10].

D. Data Flow and Database Design

The system follows a Level-1 Data Flow Diagram
(DFD) that maps interactions from sensor data
collection to Al-based decision output.

loT Sensors - Cloud Al Model .| Dauhboard]
traffic density data traffio data e king display and control
Traffic Signal
actuation
Fig. 2. Data Flow Diagram.

Figure 2 shows data flow from IoT sensors — cloud
database — Al model — dashboard — traffic signal
actuation.

The backend database schema (Fig. 3) comprises three
core tables:

SensorData: Stores real-time records of vehicle
counts, timestamps, and sensor identifiers.

SignalTimings: Contains dynamically adjusted signal
durations per intersection.

SystemLogs: Logs Al and manual decisions, enabling
performance analysis and trend visualization.
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® Road

e road id: INT «PK»

name : VARCHAR
location : VARCHAR

® Device

e device id : INT «PK»

ip_address : VARCHAR
status : VARCHAR

has manages

@ Sensor

s sensor_id : INT «PIK:

type : VARCHAR
road id : INT «FK»
device_id : INT «FK»

generates

A
® TrafficEvent

e event id : INT «PK=»

timestamp : DATETIME
sensor_id : INT «FK=
detected : BOOLEAN

Fig. 3. Entity—Relationship (ER) diagram

Figure 3. Illustrates  relationships  between
SensorData, SignalTimings, and SystemLogs tables.

E. User Interface and Dashboard Design

A responsive Next.js web dashboard was developed to
provide a graphical control interface for
administrators. The dashboard includes real-time
simulation, manual override options, analytics
visualization, and system logs.
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Fig. 4. Dashboard overview

Fig 4 displays real-time traffic signal states, Al-
generated decisions, and manual control buttons for
each intersection.

Fig. 5. Logs and analytics interface.

Fig 5 summarizes signal activity frequency,
congestion reduction trends, and Al versus manual
decision accuracy.

The interface supports both live automatic control and
manual mode, useful during internet outages or system
maintenance. Data visualizations, including bar and
line charts, assist in identifying high-traffic corridors
and operational anomalies.

F. AI Model Design

The predictive model is based on a Random Forest
Regressor, selected for its robustness, low
computational demand, and interpretability. The
model utilizes input features such as:
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Vehicle count per lane
Time of day
Historical average waiting time

Congestion density index

Data Collection

}

Data Preprocessing

|

Model Training

|

Model Evaluation

|

Model Deployment

|

Prediction

Fig. 6. Al workflow diagram.

This figure illustrates the end-to-end workflow of the
Al module within the IoT-based traffic management
system. The process begins with real-time data
acquisition from ESP32 sensor nodes, followed by
preprocessing and temporary cloud storage in
Firebase. The data are then subjected to feature
extraction to generate variables such as vehicle
density, lane occupancy, and average waiting time.
These features feed into a locally hosted Random
Forest Regressor, which predicts optimal green-light
durations. The decision output is transmitted through
the MQTT protocol to the actuation layer, triggering
relay-controlled traffic signals. A continuous feedback
loop allows the Al model to log outcomes and retrain
using historical data, thereby improving prediction
accuracy over successive iterations. This workflow
ensures low-latency inference, adaptive control, and
autonomous operation under variable network
conditions.
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Training and validation were performed using
simulated datasets augmented with real-world field
samples. The model achieved a Root Mean Square
Error (RMSE) of 3.4 seconds and a training accuracy
of 93.4% during cross-validation.

This local deployment approach reduces dependency
on constant cloud connectivity, enabling decision-
making at the edge. Similar architectures have been
successfully deployed in other real-time control
systems such as energy and environmental monitoring

(31, [6].

G. System Integration

The final integration combined hardware, cloud
services, and the Al module using MQTT for
asynchronous communication. System testing
confirmed seamless data flow, minimal latency, and
high synchronization between the Next.js dashboard
and ESP32 microcontrollers.

Real-time simulations demonstrated the system’s
adaptability under varying traffic loads and
environmental conditions, validating the
architecture’s efficiency in decentralized urban
contexts [7].

V. RESULTS AND ANALYSIS
A. Experimental Setup

Evaluation mode. All trials were conducted in a
lab/simulated intersection setting with emulated signal
heads; images in Figs. 7-9 show the simulation rig. No
real vehicles or live intersections were used. The test
configuration included four ESP32-based nodes per
intersection, each equipped with ultrasonic sensors for
vehicle detection and relay-controlled LED arrays
emulating signal lights. Data were transmitted via
MQTT over Wi-Fi to a Firebase cloud instance.

The Al inference engine, implemented with a Random
Forest Regressor, was deployed locally using a Python
Flask API integrated into the Next.js dashboard. Each
simulation ran for 30 minutes per trial, generating
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traffic load profiles ranging from low (20
vehicles/minute) to high (80 vehicles/minute).

B. Performance Metrics

Five quantitative metrics were used to evaluate system
performance:

Average Vehicle Waiting Time (AVWT): Mean time
each vehicle remains stationary at the intersection.

Throughput (TP): Number of vehicles successfully
passing through an intersection per minute.

System Latency (SL): Time delay between data
acquisition and signal actuation.

Fuel Consumption Reduction (FCR): Estimated
decrease in idle-time fuel use.

Prediction Accuracy (PA): Correlation between Al-
predicted and empirically optimal signal durations.

All metrics were benchmarked against a fixed-time
control  baseline to determine  percentage
improvement.

C. Quantitative Results

Table II presents a summary of the system’s
performance under varying traffic densities.

Table I
Performance Comparison between Fixed-Time and
Proposed Al-IoT Systems

Metric Fixed- | Propose | %
Time |d Improveme
Contr | System | nt
ol

Average 37.5 21.0 44 %

Vehicle
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Waiting
Time (s)

Throughput | 53 67 27 %
(vehicles/mi

n)

System 3.5 1.9 46 %
Latency (s)

Fuel 16.5 12.1 27 %
Consumptio
n (mL/min)

Al — 93.4% | —
Prediction
Accuracy

Baseline
1.0 Proposed

0.8

0.6

0.4

0.2

0.0

MSE RMSE MAE R?
Evaluation Metric

Fig. 8. Performance comparison chart.

This figure compares the performance of the fixed-
time control system and the proposed Al-IoT traffic
management system across four key metrics: Average
Vehicle Waiting Time, Throughput, System Latency,
and Fuel Consumption. The proposed system
significantly outperforms the baseline across all
indicators—achieving a 44% reduction in waiting
time, a 27% improvement in throughput, and a 46%
reduction in latency. These results validate the

336 |Page

ISBN: 978-9982-95-500-3

model’s adaptive control efficiency and its
contribution to fuel conservation through reduced
idling time. The bar chart visually underscores the
magnitude of improvement, supporting quantitative
findings presented in Table I1.

The results indicate substantial efficiency gains: a 44
% reduction in waiting time, 27 % improvement in
throughput, and nearly half reduction in latency. These
metrics demonstrate the responsiveness of the
adaptive control algorithm in dynamically reallocating
green time based on real-time vehicle density.

D. AI Model Evaluation

The Random Forest Regressor was evaluated using
Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) across validation folds. The model
achieved an RMSE = 3.4 s and MAE = 2.7 s,
confirming high predictive reliability for signal
duration estimation.

Comparative analysis with recent lightweight Al
models for traffic prediction, such as Deep Q-Learning
[25] and Gradient Boosted Regression Trees [26],
showed that Random Forest maintained similar
accuracy while consuming 35 % less computational
power, aligning with energy-efficient edge-Al design
principles [3].

E. System Reliability and Network Performance

Network reliability tests showed 99.3 % packet
delivery success rate over MQTT communication and
< 2 s average end-to-end latency. These findings are
consistent ~ with IEEE  802.11-based  IoT
implementations achieving low-latency transport in
urban scenarios [4]. The system also sustained
uninterrupted operation for 12 hours of continuous
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simulation without data loss, demonstrating stability
and resilience against intermittent connectivity.

100
—— Packet Delivery Ratio

;\? 98 - =~ Latency 3.0
o
2 8 205
> L
S 941 §
2 \ 10 &
S g2t 3
2 N
3] N
& 90 il na e 0.5

92 0.0

Time

Fig. 10. Network reliability and latency trend.

Fig 10 Graph showing MQTT packet delivery ratio
and latency fluctuations over time.

F. Comparative Benchmarking

When compared with existing smart traffic
management frameworks such as AlFlow [5], SCATS
[6], [26] and hybrid VANET-IoT systems [7], the
proposed model exhibited competitive or superior

results (Table III).

Table 111
Comparative Performance Benchmark with State-of-
the-Art Systems

AlFlo | 2.7 39 Medium | Smart
w corridor
(2023 s

) [5]

Propo | 1.9 44 Low Develo
sed ping
Syste cities

m

(2025

)

Syste | Avg. | Waitin | Computat | Deploy
m Late | g ional ment
ncy | Time | Cost Context
(s) Reduc
tion
(%)
SCA |32 30 High Develo
TS ped
(2022 cities
) [6]
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G. Qualitative Analysis and Observations

Beyond quantitative gains, qualitative evaluation
through stakeholder interviews and observational
studies indicated enhanced public perception of
efficiency and improved driver compliance. Municipal
engineers highlighted the dashboard’s real-time
analytics as an enabling tool for traffic forecasting and
resource allocation.

The modularity of the system allows replication across
other intersections without significant infrastructural
overhaul-—an aspect often missing in imported
commercial systems [8]. Furthermore, its integration
of Al and IoT within a localized framework addresses
the contextual challenges of cost, maintenance, and
data availability in Sub-Saharan cities.

H. Discussion

The empirical findings validate the system’s ability to
operate as a low-cost, high-efficiency adaptive traffic
management solution. The combination of IoT data
streams and Al decision logic contributes to
measurable improvements in throughput,
sustainability, and operational flexibility. These
outcomes echo trends reported in recent smart
mobility research emphasizing edge-Al integration,
context-aware control, and environmental impact
reduction [9], [10].

VI. CONCLUSION AND RECOMMENDATIONS
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A. Conclusion

This research presented the design, development, and
evaluation of an IoT- and Al-based intelligent traffic
management system tailored to the infrastructural and
economic realities of developing cities such as Lusaka,
Zambia. The system integrates ESP32-based IoT
sensors, a Firebase cloud backend, and a Random
Forest Al engine to provide adaptive signal control
and real-time decision support. Simulation results
demonstrated  substantial improvements  over
conventional fixed-time systems, achieving a 44%
reduction in average waiting time, 27% improvement
in throughput, and 46% reduction in latency, while
maintaining a prediction accuracy exceeding 93%.

The study’s methodological rigor—anchored on the
Waterfall software development model—ensured
systematic design, testing, and validation of both
hardware and software components. The incorporation
of edge Al minimized reliance on cloud connectivity,
addressing one of the major barriers to smart
infrastructure deployment  in
environments. Furthermore, the results confirmed that
context-aware Al models can operate effectively even
in conditions of limited bandwidth and unstable power
supply, bridging a significant gap between global
intelligent  transport technologies and local
infrastructure capabilities.

low-resource

In academic and practical terms, this research
contributes to the emerging discourse on smart
mobility and sustainable transport systems in Sub-
Saharan Africa. It extends the theoretical framework
of intelligent transportation by demonstrating that AI—
IoT integration can enhance both operational
efficiency and sustainability without the high
infrastructural  demands typical of Western
implementations [2], [4].

B. Research Contributions

This study provides three key contributions to the
scholarly and practical fields of intelligent
transportation and smart city innovation:

A Novel Context-Specific Framework:

The developed architecture combines IoT data
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acquisition, cloud-assisted processing, and localized
Al inference into a modular, scalable system suitable
for developing urban centers.

Empirical  Evidence of  Efficiency  Gains:
Quantitative analysis validated the system’s capacity
to optimize traffic flow and reduce energy wastage,
contributing new empirical insights to sustainable
transportation literature.

Scalable, Low-Cost Implementation  Model:
The use of open-source hardware and lightweight
machine learning models establishes a cost-efficient
prototype adaptable for multiple urban intersections
with minimal technical overhead.

These contributions align  with  Sustainable
Development Goal (SDG) 11, Sustainable Cities and
Communities, emphasizing resilient, inclusive, and
resource-efficient urban systems [3].

C. Practical and Policy Implications

The study holds several implications for practitioners,
policymakers, and urban planners:

For Practitioners

The integration of low-cost IoT modules and
edge-based Al enables municipalities to
upgrade existing infrastructure
incrementally, reducing dependency on
imported, high-cost systems.

For Policy Makers

The findings advocate for the establishment
of national smart mobility policies that
prioritize investment in digital infrastructure,
data-sharing frameworks, and local Al
research capacity [4], [5].

For Academia

The framework serves as a baseline for future
research exploring multi-agent reinforcement
learning, federated AI models, and hybrid
IoT-cloud architectures in traffic systems. It
also invites interdisciplinary collaboration
between computer scientists, engineers, and
transport planners to further contextualize
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digital transformation in African mobility
ecosystems.

D. Limitations and Future Work

This study is limited to hardware-in-the-loop
simulation; results may differ under real traffic
heterogeneity, occlusions, and sensor noise. Future
work includes phased on-street pilots across multiple
Lusaka intersections with safety oversight and A/B
control baselines. While the proposed system achieved
notable results, certain limitations provide
opportunities for future enhancement. The current
implementation was validated under simulated
conditions; real-world deployment across multiple
intersections will be essential to assess scalability and
resilience under variable weather and network
environments.

Future studies should integrate computer vision-based
vehicle classification, deep reinforcement learning,
and blockchain-enabled data security for advanced
traffic coordination. Incorporating vehicular ad hoc
networks  (VANETs) could also enhance
communication between vehicles and intersections,
improving predictive control.

Additionally, further optimization can be pursued
through energy-efficient edge-Al frameworks and 5G-
enabled communication to minimize latency and
support large-scale deployments.

E. Final Remarks

The findings affirm that localized Al-IoT architectures
offer a viable path toward achieving intelligent,
environmentally sustainable, and data-driven urban
transport systems in developing countries. The
system’s ability to deliver tangible performance
improvements  using affordable, open-source
technology underscores its potential for nationwide
scalability and regional replication.

As African cities continue to urbanize rapidly,
embracing context-specific digital solutions such as
this will be critical to addressing congestion,
enhancing safety, and improving quality of life for
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urban populations. The integration of smart traffic
management into broader smart city frameworks
represents not just a technological evolution but a
strategic imperative for sustainable development.
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