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Abstract - Big Data is defined using characteristics and
concepts beyond size, pinpointing to the volume, velocity,
variety, and veracity of the data. The integration of big
data analytics in agriculture is revolutionizing farming
practices, crop management, and decision-making
processes. Much of the existing research has utilized
limited datasets and simplistic analytical methods, such
as basic statistical approaches and opaque machine
learning models, which hinder clear interpretation by
farmers and stakeholders. The study aimed to develop a
predictive model and forecasting accuracy using data
analytics that will improve crop yield in Agriculture,
applied advanced data analytics approaches with tree-
based machine learning techniques to pinpoint key
factors that influence agricultural productivity and used
key factors to build a model that predicts crop yield. The
study implemented experimental methodology. Utilizing
the LightGBM framework - a gradient boosting model
known for its interpretability, analyzed an
amalgamation of data from surveys, farm records, and
climatic information to assess feature importance. It also
integrated diverse datasets from governmental reports
and agricultural archives. This analysis included various
socio-economic factors such as access to water, soil
quality, type of seeds, weather pattern, educational levels
of farmers, and market access, which were identified as
critical variables affecting agricultural success. The
LightGBM model not only achieved high accuracy and
reliability but also provide transparent insights,
outperforming other methods like XGBoost, decision
trees, and random forests in our evaluations.
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INTRODUCTION

Big Data analytics in the agricultural sector has huge
potential to contribute to the requirements of food
production. Predictive analytics is a term that covers in
principle, the same area as predictive modelling, but in
practice it is also used to describe general trends in
advanced data processing. The study demonstrates the
role of Big Data in pertinent data acquisition from
factors affecting the agriculture sector, such as climatic
and weather, soil and land, crop variety, agronomic
practices, pests, diseases and biological, social,
economic and management factors and technological
factors. In this study crop surveys and climate data
from 2001 to 2024 were be collected, analysed,
cleaned and integrated, a dataset was built used for
predictive analysis and forecasting.

Predictive analytics emphasizes on building models
that result in fit statistics. This was used to perceive
how crop growth is sensitive to climate factors, soil
conditions, and farming practices [1]. Using precision
agriculture through predictive models is the concept
that enables farmers to understand crops at the micro
level and manage the crops smartly [2]. Therefore, Big
data analytics was implemented and effectively used it
to develop predictive model tailored to analyse and
improve agricultural landscape. The Agricultural
sector faces numerous challenges, including
unpredictable weather patterns, low productivity, poor
resource allocation, and fluctuating market prices.
These factors hinder the ability of farmers to plan
effectively and reduce production losses, and ensure
food security. By harnessing big data, the agricultural
sector can gain insights that support better crop
management, resource allocation, and risk assessment.
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RELATED WORKS

This paper reviews literature on the effectiveness of
existing big data analytical models in predicting
maximum crop yield, investigates papers on
challenges and opportunities of applying predictive
models to maximise crop yield, resource allocation,
and market prediction, and how multiple data sources
can be integrated in developing a big data-driven
predictive model.

The study, [3] presented a model on crop yield
prediction using machine learning techniques, and
extracted major machine learning algorithms, features
and evaluation metrics used in the yield estimation by
integrating agrarian factors in machine learning
techniques [4]. This allowed them to show a strong
relationship between crop yield and climatic factors.
According to [5] use of computer vision and Al to
enhance the grain quality of five crops (maize, rice,
wheat, soybean and barley), disease detection and
phenotyping. [6] reviewed the application of big data
analysis in some fields of agriculture. It highlighted
solutions to some key well-known problems, used
tools and algorithms, along with input datasets. The
authors concluded that big data analytics in agriculture
is still at its early stage, and many barriers need to be
overcome, despite the availability of the data and tools
to analyse it.

Researchers have employed various modeling
approaches, including crop simulation models,
statistical analysis, agro-economic simulation, and
computable general equilibrium models, to quantify
the economic impacts of climate change on agriculture
globally or in specific regions. [7] These studies have
reported substantial differences in outcomes, such as
production, trade, welfare, and prices, due to
differences in  model parameterization and
specification [7].

Most crop models found in pre-precision agriculture
literature and during its dawn typically are based on
linear regression analysis, calculations of root mean
square error, and mean error [8]. Multiple linear
regression techniques using interaction terms are
considered an improvement over strictly linear
models. Multiple linear regression and linear mixed
models are used in soil mapping, where the variability
of a target soil property is explained by its
relationships with other soil and climate factors, with
shortcomings like autocorrelation and non-linearity
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between variables. In their paper [9] stated that the
high complexity and non-linearity of problems faced
in agriculture require methods able to approximate
complex mappings by integrating data coming from
different sources and exploiting the information
contained in the reference samples. According to [10]
having used the Naive Bayes classifier to learn models
and to make predictions. The authors showed that
Naive Bayes has good performance on sparse datasets,
extremely fast to run on a large, sparse dataset when it
is formulated well. The main speedup stems from the
fact that Naive Bayes completely ignores inter feature
dependencies by assuming that within-class
covariance’s of the features are zero. In the study [28]
the author proved the application of supervised
machine learning algorithms (Logistic regression and
Light gradient booting) to combine data sources in
predictive analysis,

The development of big data-driven predictive models
is a rapidly evolving field. The studies reviewed shows
gaps in the techniques used. Authors [11]; [8]
illustrates the use of regression analysis well in
predictive analysis but creates a limit only to
development of models using linear regression
analysis, calculations of root mean square error, and
mean error. This technique or method causes
challenges when the data contains outliers. In [13] the
authors present the use of MapReduce Model to make
analysis of different type of parameters that give us
what if analysis. In the literature [14] a large gap
between potential and actual yield were founded by
WOFOST model. The WOFOST model often
overestimates, underestimates or slightly offsets the
normal estimates.

METHODOLOGY

In this research study an experimental research
methodology was used as it allowed the researcher to
analyse data, validate the findings and explain
unexpected results. The study also adopted a
predictive approach. The integration of advanced
analytics enabled transformation of data into
actionable insights, enabling farmers to anticipate
market trends and adapt to environmental changes. For
instance, the exploitation of large datasets on local
agriculture practices, including climate patterns and
soil conditions was employed to significantly improve
decision-making processes. However, as highlighted
in contemporary analyses, the challenges associated
with underutilized data resources persist [15]
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The vast data was collected from three (3) provinces
namely Luapula, Copperbelt and Southern and then
build datasets. This include climate data, soil health
information and seeds type that were planted in each
farming season with their respective crop yield per
area size to anticipate future agricultural outcomes.
The data collected in this study is from 2001 to 2024.

The study also gather data relating to the models used
in predicting crop yield and further examine the
challenges and opportunities of applying predictive
models to improve crop yield, resource allocation, and
market prediction. The data was cleaned, analysed and
a datasets built. The following methodological
framework was used as per diagram in Figure 3.1.
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Figure 3.1: Methodological Framework Diagram

The data was collected from various sources, such as
government agencies, research institutions, and
Metrological Department, to create a comprehensive
dataset.

Particular attention given to the quality, completeness,
and timeliness of the data, as these factors were critical
for effective predictive modeling and forecasting.

MODEL/FRAMEWORK

Accurate predictions of crop yield are critical for
effective crop management, resource allocation, and
strategic planning in agriculture [16]. The escalating
volatility of food prices has underscored the urgency
of enhancing crop productivity on existing farmlands
to meet the demands of a growing global population,
further emphasizing the importance of reliable crop
yield models [17].

The proposed model used the following factors Soil
type to ascertain the ratios of Nitrogen, Phosphorus,
Potassium, Temperature, Humidity and pH values of
soil, Crop spacing, seed type, Climate (rainfall
pattern), planting periods, crop diseases and market
demand. These factor were used by in the model to
predict maximum crop yield. This empirical statistical
model, would establishing complex relationships
between crop yield and related variables.
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In the conceptual design the performance of
LightGBM was compared with the prediction
performance of benchmark models trained using
XGBoost, random forest and decision trees.

SHAP was used to interpret the proposed model such
that it can be easily understood and validated by end
users. The focus was to expand the scope of EDM and
also provide actionable insights and models to
improve crop yield in Agriculture.
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Figure 4.1: Proposed Model

Using SHAP, enabled the interpretation and
visualization of the contribution of features. Features
on the right tend to push the model prediction to the
base value while those on the left pushes the prediction
to the output value. In this case, historical agricultural
production provides the biggest impact. Therefore,
end users of this model such as farmers and
government are able to interpret and understand the
impact factor of all the control features. To understand
the effect of one feature in the prediction, a SHAP
value of that feature was be plotted against other
feature SHAP values in the dataset as shown in Figure
4.2.1.

CONCLUSION

The integration of machine learning algorithms with
Big data analysis technologies in the proposed model
offers a paradigm shift in yield forecasting, enabling a
transition from conventional, often subjective,
methods to more data-driven and objective strategies
that leverage complex relationships between
environmental factors and crop performance. This
model will provide solutions to challenges affection
the maximizing and prediction of crop yield which is
much needed as a solution to farmer’s challenges.
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