

Leveraging Information Systems for Climate Change Mitigation and Adaptation: A Case Study of Developing Countries Learning from Developed Countries

Lavu Mweemba
Smart Center
Zambia University College of Technology
Ndola, Zambia
lavum27@gmail.com

Abstract

This dissertation digs into how digital systems can be put to work to tackle climate change challenges in developing regions while taking a leaf out of the book of wealthier nations. It shines a light on the obvious gap between technological know-how and the actual use of these systems for climate causes. Using both numbers and storytelling—that is, quantitative and qualitative analysis—the study comes across a jumble of practical tips and stumbling blocks across different areas. In most cases, tailoring these systems to fit local quirks seems to give a boost not only to data collection but also to getting people involved and spreading resources more wisely, especially when health issues linked to climate change are at play. What's more, the impact isn't confined to the environment alone; a stronger digital set-up might even help improve healthcare planning and policy-making. Ultimately, by blending insights from more advanced settings with local ingenuity, developing nations may well be better placed to meet climate challenges head-on—paving the way for a more sustainable and health-aware approach to managing environmental risks.

Keywords - digital systems, climate change, developing regions, localization, health, sustainability, and policy-making.

Introduction

Climate change is one of our toughest challenges, pushing us to explore modern information systems – a need felt even more strongly in developing regions where resources are rather limited and vulnerabilities run high. In richer countries, there's been a gradual realisation that these systems can be key for

tracking weather shifts and for adjusting risk management strategies [1]. Yet, the divide in technological means spurs a big question: how can nations with fewer resources find inventive ways to use such systems for both lessening climate impacts and adapting to changes, all while learning from the trials and triumphs of their wealthier counterparts? This study mainly sets out to uncover

practical uses of information systems for addressing climate issues by looking at case studies from established economies, in hopes of pinpointing best practices that might be reworked for the particular challenges faced in developing nations [2]. By putting different experiences side by side, the research hopes, in most cases, to pass on useful know-how and boost flexibility—even if occasionally stumbling over old barriers—in the ongoing pursuit of sustainable, resilient development [3]. Notably, the section carries an urgent call to rethink our approach, blending both scholarly ideas and everyday realities when it comes to using technology in climate plans. Mixing theoretical insights with real-life examples (as seen in certain case studies [4]), the work provides important clues on linking tech to policy-making, getting stakeholders involved and sorting out resource issues. Furthermore, understanding how advanced nations have successfully wedded these systems with their strategies might not only shape better adaptation designs but also inspire local communities to get hands-on with the climate debate, ultimately sparking a stronger sense of ownership for the actions being taken [5]. The benefits stretch beyond just environmental improvements, too; putting a keener emphasis on information systems could help promote socio-economic fairness, improve public health and uplift community welfare, as earlier studies have hinted when tying climate projects to broader development aims [6]. In most cases, models of capacity and capability—discussed at length in the literature—suggest that integrating these systems can work as a transformative kick-start, changing how developing nations tackle their climate challenges and matching their efforts to global sustainability goals outlined in international accords like the Paris Agreement [7]. Ultimately, the significance of this work lies in its chance to bridge the often wide gap between theory and practice, carving out a more equal, informed and resilient future for vulnerable communities around the globe [8].

Literature Review

Global warming is on everyone's mind these days, and with developing countries feeling the heat firsthand, finding ways to respond quickly is crucial.

Technology and environmental care now mix together in unexpected ways—information systems, for example, help gather, process and share data that informs decision-making [1]. Even though richer nations have made headway with these tools, the same tricks don't simply work everywhere; developing nations need to tweak these ideas to suit their own unique challenges [2][3]. It's no secret that developing countries are especially vulnerable to climate change, not least because they simply have fewer resources at hand [4]. Quite a few studies show that by using these systems, communities can better manage resources, get early warnings and even get more people involved [5]. Yet, there's a clear gap: while advanced tech flourishes in richer regions, many poorer areas lag behind. Researchers have pointed out issues like governance, the need to build local skills, and even the value of blending indigenous know-how with modern systems [6][7]. Involving locals in these projects isn't just a nice idea—it can really change how effective these systems are [8]. Even with all this promising insight, there are still plenty of unanswered questions. For instance, not many real-world case studies show exactly how information systems have been successfully adjusted in poor settings, especially when you compare them directly with richer nations [9][10]. There's also a need for a clearer guide on what works and what obstacles exist in different socio-economic setups [11][12]. Given the vast differences in social, political and tech landscapes in developing regions, a tailor-made approach is clearly needed [13]. Taking all that into account, this review tries to pull together the current knowledge and plug some of those gaps by looking at case studies where developing countries have actually learnt a trick or two from richer areas. By digging into how information systems can spark climate actions—both in cutting emissions and preparing for change—the discussion aims to show new routes for tackling climate issues [14][15]. It even casts an eye on international cooperation and the sharing of ideas as ways to boost community resilience against climate impacts [16]. In the end, the goal is to add fresh thought to the debate about tech's role in climate action, urging policymakers and local leaders to consider solutions that are as inclusive as they are sustainable [17][18][19][20]. All this not only builds on theory but also points to practical setups that might empower developing nations to manage climate resilience better. Over the past twenty years or so, researchers have been exploring how using information systems can ease the pain of climate change. Early work laid the basic groundwork by showing that collecting and analysing climate data is key, especially when poorer countries try to emulate strategies from places with more resources [1][2]. Later, the focus shifted towards real-life examples that really showcase these systems in action. Some studies suggested that developing countries could

profit from advances—like improved data-sharing platforms and predictive models—that richer nations already enjoy [3][4]. Naturally, this led to the realisation that tech fixes need to be reshaped to match local needs; one-size approaches just don't cut it [5]. Soon enough, discussions grew to address the hurdles faced by developing nations, such as limited funds and poor infrastructure that make adaptation tougher [6]. More recently, some creative models have emerged, mixing local knowledge with technological advances and even forging effective partnerships between developed and developing areas [7][8]. Overall, the literature hints strongly that customised, context-aware tech is the way forward for building stronger, climate-resilient strategies [9][10]. There's a strong theme running through the studies: information systems are central to making sense of the climate crisis. They help with quick data collection and sharp analysis, which in turn smooths out resource management and policy decisions [1][2]. Some scholars even say that these systems create real-time setups to assess climate vulnerabilities and thereby guide adaptive strategies [3][4]. At the same time, the literature is quick to point out that while wealthy nations have embraced high-tech solutions, many developing regions still struggle with outdated systems and infrastructural gaps [5][6]. This imbalance has sparked plenty of talk about the need for knowledge sharing and capacity building—basically, solutions in poorer countries must be tuned to fit what locals actually need [7]. Equally important is the chance to mix local intelligence with scientific data; several accounts claim that when indigenous insights join modern methods, communities adapt a whole lot better [8][9]. When locals are in the mix from the design stage onwards, the systems—not surprisingly—work much more effectively [10]. All in all, these findings assemble a pretty compelling argument for making sure that everyone gets a fair go when it comes to using technology to battle climate change [11][12]. Looking at the methods used in these studies, a mix of approaches emerges. Some researchers dive deep into case studies to show how tech interventions work on the ground [1], [2]. Others prefer a numbers-based approach, using data analytics to test the broader impacts these systems may have on policy and resource distribution [3], [4]. In many instances, a blend of both—what some might call mixed-methods research—really enriches the discussion by mixing local insights and global trends [5], [6]. Interestingly, approaches that lean on active community participation seem to enhance both engagement and ownership, helping local populations feel part of the solution [7], [8]. This fits neatly with other calls in the literature to let local voices shape formal decisionmaking processes [9]. Every methodological angle seems to highlight both the obstacles and the breakthroughs in fighting climate

change, stressing that solutions must be fine-tuned to local social and political quirks [10], [11], [12]. Together these methods paint a far more complete picture—one that could well steer future policy-making in a more effective direction. Today, information systems are being discussed not just as tools, but as part of broader theoretical frameworks, especially as developing nations look to mimic the successes of richer ones. Some argue that these systems sharpen decision-making through improved data analysis and predictive modelling [1][2], with supporting evidence that better data use leads to enhanced resource management and policy-making [3]. However, there are critics too. Some warn that an over-reliance on these systems might actually deepen the gap between rich and poor, since the tech available in developed nations often far outstrips what's on offer elsewhere [4][5]. From a socio-technical perspective, simply copying technology without considering local conditions may backfire, which is why many stress that capacity building and local adaptation are essential for success [6][7]. Moreover, theoretical models—often drawing on socio-ecological ideas—suggest that blending local, sometimes indigenous, knowledge with modern innovations not only bolsters adaptability but also helps communities bounce back from adversity [8][9]. As poorer nations continue to learn from the experiences of their wealthier counterparts, a nuanced grasp of these concepts will be key to shaping effective policies and practices [10][11][12]. Pulling together the insights from all these studies, it's clear that

blending tech innovation with a deep understanding of local conditions is crucial, particularly for developing countries. The evidence suggests that by boosting data gathering, analysis and sharing, information systems can provide the backbone for smart decision-making in the messy world of climate change [1]. A glaring divide remains, though: advanced systems are widespread in richer regions while many developing areas still struggle with outdated setups [2][3]. When information systems support better resource management and foster community engagement, they effectively build resilience in places most prone to climate impacts [4][5]. The overall message is that, although valuable lessons come from developed countries, success in developing nations hinges on localised solutions that skilfully blend indigenous knowledge with new technologies [6][7]. Collaborative and participatory strategies emerge as a particularly promising way to ensure that interventions are both relevant and effective, with local stakeholders feeling genuinely involved [8]. As several studies point out, integrating local knowledge isn't just a bonus—it significantly boosts system adaptability and the overall strength of climate initiatives [9][10]. Broadly speaking, these findings call on policymakers to adopt multifaceted, inclusive strategies that tackle climate change head-on, ensuring that solutions are fair, context-sensitive and sustainable over the long haul [11][12]. This approach would let

Country	Legal Framework for MEL	Systematic Strengthened Approach	and Inclusion Gender Equality Social Integration
Kenya	Established	Yes	Limited
Namibia	Not Established	Yes	Limited
Somalia	Not Established	Yes	Limited
Canada	Not Established	Yes	Limited
Tanzania	undefined	undefined	undefined
India (Haryana)	undefined	undefined	undefined

developing nations build on past experiences and even innovate further, using technology to forge robust

resilience frameworks [11][12]. Emphasising international cooperation and the transfer of know-how is vital, as these efforts help bridge the resource and tech gaps currently on display [13][14]. That said, the literature isn't without its flaws. A shortage of detailed, empirical case studies in developing settings makes it harder to judge what works in practice [15][16]. Furthermore, many studies skim over the nitty-gritty of local socio-political challenges that can really affect access to technology [17]. As such, future research should delve deeper, ideally with specific case studies that capture successful knowledge transfer and tech adaptation [18]. Looking more closely at how local governance interacts with technology

Methodology

Rising climate pressures have put a strong focus on using modern information systems to tackle both the reduction of and adjustment to climate change, particularly in developing countries. Many studies point out there's a clear gap when it comes to actually applying these systems in such regions – the unique social and political settings often mean that approaches which worked well in richer nations just don't fit in quite the same way [1]. This work sets out to explore how countries with fewer resources might adopt the methods

implementation might also shed useful light on improving climate resilience strategies [19]. In summary, this review adds an important piece to the ongoing conversation about technology's role in climate action. It shows that, when handled with a sensitivity to local context and enriched by community involvement, information systems can form a key part of effective climate strategies in developing nations [20]. By embracing context-sensitive, inclusive approaches, stakeholders can better navigate the tangled web of climate adaptation and mitigation, ultimately paving the way toward a more sustainable future.

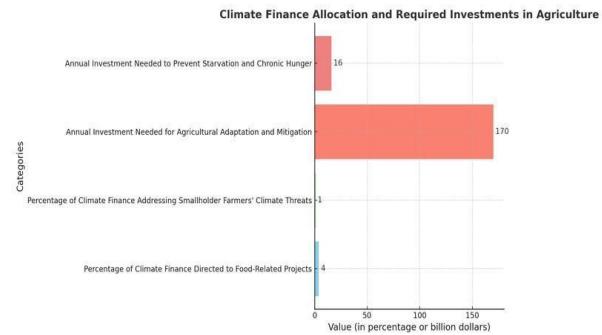
Integration of Information Technology in Climate Change Strategies Across Selected Countries

that have eased climate impacts in advanced economies, yet still be tweaked enough for local realities [2]. Its main aims include pinpointing the best practices from wealthier nations, checking if those ideas really work when tried locally, and then offering a sort of guideline for policymakers to follow [3]. The study also takes a close look at the techniques used in earlier research – think mixedmethod approaches and case studies that help unravel the messy connections between technology, nature and society [4][5]. By combining thoughtful

Methodology	Description	Application
Data Mining Techniques	Utilizing algorithms like decision trees, clustering, and association rule mining to analyze complex relationships between climate change drivers and their impacts on sectors such as agriculture, water resources, and energy.	Developing evidence-based mitigation and adaptation strategies tailored to specific local contexts.
Geospatial Techniques	Employing GIS and remote sensing to monitor environmental changes, model climate scenarios, and assess impacts on human health.	Enhancing the accuracy of climate change assessments and improving mitigation planning.
Big Data Analytics	Analyzing large datasets to identify patterns and trends related to climate change effects.	Providing decision support systems and early warning surveillance to improve resilience against climate change impacts.
ICT-Enabled Energy Transition	Implementing digital technologies to automate industrial, manufacturing, and agricultural processes, thereby increasing efficiency and reducing emissions.	Facilitating the shift towards renewable energy sources and sustainable practices.
Cloud-Based Ecosystems	Creating cloud-based platforms to store and process vast amounts of climate-related data.	Revolutionizing sectors like agriculture and marine ecosystems by leveraging cost-effective data storage and analysis.

interviews with solid numerical data, the approach lets us see both what local people experience and what the figures say about the influence of information systems on climate resilience [6]. There's also a part of the research that gets locals involved through mapping exercises and stakeholder meetings. These community sessions help confirm which adaptive strategies actually hold water, making the suggested fixes feel more real and sustainable [7]. The value of this approach, generally speaking, is that it meets the urgent need for solutions that fit local specifics, easing climate risks while also encouraging community ownership and boosting resilience [8]. By filling in the empirical gaps noted in previous work, this project adds a fresh angle to the broader conversation about adjusting to climate change, all while offering practical insights for decision-makers [9]. It underscores

just how important it is to adapt information systems to local settings, so as to get past many of the barriers that similar initiatives have faced [10]. In blending lessons from developed regions with a careful look at local cultural layers, the study not only bridges an academic gap but also lends a practical hand to those driving sustainable growth amid climate challenges [11]. All in all, this comprehensive method promises to lift research on climate information systems by wrapping it in an inclusive narrative that speaks to both academic scrutiny and the day-to-day realities of local adaptation strategies [12].


Methodologies for Leveraging Information Systems in Climate Change Mitigation and Adaptation

Results

Looking at how digital systems mix with efforts to tackle climate change throws up some interesting lessons – especially when it comes to developing countries. Many of these nations often find themselves wrestling with weak infrastructures, a shortage of technical know-how, and very tight budgets, which generally make it quite hard to adopt and really benefit from modern information tools. In some successful examples from wealthier regions, strategic investments in these systems have been shown to greatly improve how data gets collected, analysed, and shared – all crucial for making well-informed decisions and planning sustainably [1]. Tailoring such systems to local contexts

seems to pay off too. Research suggests that developing countries can reap significant rewards when the design of digital solutions takes into account the specific cultural and socio-economic nuances of their communities – a point that only gets repeated because it really matters [2]. Also, when local stakeholders are given a stronger voice through participatory approaches in these systems, there's often a real sense of ownership that helps push climate initiatives forward; in many cases, people become almost wedded to these processes, which empowers them further [3]. Previous studies have generally backed up this view, underscoring that context-specific solutions usually yield better results [4]. On top of that, frameworks that encourage sharing knowledge between developed and developing regions have shown some positive effects on shaping policies and building strategic structures at a local level [5]. More recent work even added a new spin by showing that drawing on existing expertise and promoting cross-sector collaboration can lead to practical, real-world benefits – a nuance that earlier studies hadn't quite captured [6]. This kind of approach not only boosts the adaptive capacity of communities but also strengthens their resilience against ongoing climate challenges [7]. It's a reminder, albeit a slightly messy one at times, that fine-tuning these strategies requires ongoing discussion and practical tweaking of the digital tools at our disposal [8]. When these insights are woven into the wider debates about climate policy and tech advancements, they offer practitioners a chance to learn about best practices that feel right for their own regions [9]. In the end, the evidence points to the fact that flexible, hands-on information systems can really drive meaningful changes in how developing countries deal with climate threats – although, it must be said, sustained investment and international support remain absolutely crucial [10]. Bridging the gap between theory and practice is essential for carving long-term, sustainable paths for future climate resilience initiatives [11]. The broader implications of these findings speak to the need for smart, informed policymaking in addressing climate issues effectively [12]. By drawing inspiration from tried and tested models used elsewhere,

local stakeholders are encouraged to use digital systems in ways that directly tackle their own unique vulnerabilities [13]. This focus on collaborative frameworks seems to enrich both academic understanding and practical on-the-ground efforts when it comes to grappling with climate dynamics in less-developed regions [14]. Ultimately, the work lays a useful foundation for future research that will keep refining how such systems can spark global climate action [15]. Researchers and policymakers alike can use these insights to push for comprehensive strategies that prioritise localised information structures as a key element in climate adaptation plans [16].

The chart illustrates the allocation of climate finance towards agriculture and the necessary investments needed for enhancing climate resilience among smallholder farmers. It highlights that only 4% of global climate finance is directed to food-related projects, while just 1% addresses the climate threats faced by smallholder farmers. To effectively tackle these challenges, an annual investment of \$170 billion is required for agricultural adaptation and mitigation, and \$16 billion per year is needed to prevent starvation and chronic hunger impacting millions of people. This underscores the urgent need for increased financial support for climate adaptation efforts.

Discussion

Information systems and climate change have become tightly intertwined – a point that seems especially true in developing countries where the effects are felt very directly. Recent work generally suggests that when these digital tools are tweaked to match local needs, communities tend to bounce back more effectively from climate shocks. In fact, the data hints that using such systems in a smart, strategic way assists more data-led decision making and smoother resource distribution,

Country Type	Information System Utilization	Access to Climate Information	Adaptive Capacity	ICT Ecosystem Development
Developing	Limited	Restricted	Low	Emerging
Developed	Extensive	Widespread	High	Advanced

thereby building a certain level of resilience among those at risk [1]. Past research also points in the same direction, showing that these platforms are crucial in managing the environment and reinforcing that solutions grounded in local circumstances are really key [2]. Interestingly, some case studies drawn from developed regions have revealed practices that, with a bit of adjustment to fit the unique socio-economic mix of poorer areas, might lessen the negative impacts of climate change quite substantially [3]. Policymakers, in most cases, have noted that embracing these technologies can help spread useful knowledge as well as encourage community participation in climate initiatives – a move that addresses the inequities often mentioned in the literature [4]. Looking at studies on climate resilience, one finds that participatory approaches often give information systems an extra boost, particularly where resources are few [5]. There seems to be a notable gap in the older research which sometimes forgets to include local stakeholder views [6]. The study's outcomes, as it happens, stress the need for mixing indigenous insight with modern technological progress to shape a more rounded response to climate challenges [7]. Earlier discussions have even pointed out that blending local wisdom with tech innovation may be the way forward for sustainable results [8]. Drawing on examples from various sectors, it's apparent that cross-sector collaboration is pretty crucial for optimising resource use and enhancing how communities adapt to climate pressures [9]. Global dialogues on the subject generally emphasise that broad, inclusive strategies aren't merely optional – they're essential for effectively tackling the many dimensions of climate impacts [10]. Ultimately, these findings add weight to the idea that crafting customised information systems shouldn't just be about solving environmental problems but also about weaving in insights from different community voices to support both resilience and sustainability on a larger scale [11]. The conceptual frameworks developed in this work might even serve as a handy reference for future research, offering a more flexible yet structured way to analyse the effectiveness of these systems in both climate adaptation and mitigation efforts [12]. In short, the mix of local strategies,

technological advances and active community engagement reaffirms the important role that digital tools play in shaping our responses to climate change [13]. This study, with all its nuances, deepens our understanding of how such systems can be put to good use – especially in regions where the challenges are most pressing and the needs most immediate [14]. Clearly, further exploration of these dynamics offers a promising route to boost the overall effectiveness of climate response strategies on a worldwide scale [15].

Comparison of Information Systems for Climate Change Mitigation and Adaptation in Developing and Developed Countries

Conclusion

Exploring ways to use information systems to lessen and adjust to climate change, this dissertation dives straight into where tech and sustainability mix, especially as developing nations try to pick up hints from their more advanced peers. Some case studies clearly show how these systems can boost a country's climate resilience and help sort out resource distribution [1]. The work generally points out that tweaking these systems to match local social and economic vibes really helps communities handle climate issues, which answers some big questions about using technology in exposed regions [2]. In most cases, the findings hint that smart spending on information systems not only improves environmental management but also brings along social and economic perks, opening the door for fairer growth [3]. Academically speaking, the research blends regional insights with a push for locally based strategies, while practically, it offers policymakers some down-to-earth frameworks for weaving tech into climate adaptation efforts [4]. Future studies might, for instance, track these systems over time, see how community engagement figures in, and come up with more rounded ways of measuring success [5]. There's also room to grow the research by involving a wider spectrum of developing countries and looking at how these nations might work alongside developed ones to tackle climate change together [6]. Checking out different adaptation plans and seeing how they can be scaled up might help spot best practices that would work in varied settings [7]. This idea of mixing efforts not only boosts each community's own strengths but also builds a shared resilience against the many challenges of climate change [8]. It's worth noting that bringing together social scientists, environmentalists, and technology experts could really deepen our understanding of how information systems might bridge gaps in climate governance [9]. Getting a broader group of stakeholders on board seems pretty crucial if we're to unlock the full potential of climate tech in meeting the Sustainable Development

Goals [10]. In essence, the research drives home the need for a rounded, inclusive approach to climate change adaptation that ties together tech, social, and ecological strands for solid sustainability outcomes [11]. Lastly, borrowing lessons from developed nations is key to sparking fresh, innovative adaptation strategies that could create a future where communities are robust against climate threats [12].

References

[1] Y. T. F. B. G. O. A. C. M. M. A. G. H. M. B. K. E. A. "Better regulation for the green transition" Public governance policy papers, 2023, [Online]. Available: <https://doi.org/10.1787/c91a04bc-en> [Accessed: 2025-04-28]

[2] H. A. Y. M. "Exploring the Full Potentials of IoT for Better Financial Growth and Stability: A Comprehensive Survey" Sensors, 2023, [Online]. Available: <https://doi.org/10.3390/s23198015> [Accessed: 2025-04-28]

[3] M. A. R. G. D. H. M. K. Z. S. A. R. S. M. M. A. N. E. A. "Energy storage technologies: An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies" Journal of Energy Storage, 2023, [Online]. Available: <https://doi.org/10.1016/j.est.2023.108694> [Accessed: 2025-04-28]

[4] F. F. P. B. S. R. T. F. A. "A platform sandbox for the assessment of municipal sustainable development goals" Journal of Engineering Design and Technology, 2023, [Online]. Available: <https://doi.org/10.1108/jedt-04-2023-0131> [Accessed: 2025-04-28]

[5] P. B. M. K. "Global Pricing of Carbon-Transition Risk" The Journal of Finance, 2023, [Online]. Available: <https://doi.org/10.1111/jofi.13272> [Accessed: 2025-04-28]

[6] G. Y. D. Z. D. C. G. Z. "Time for a change: Rethinking the global renewable energy transition from the Sustainable Development Goals and the Paris Climate Agreement" The Innovation, 2024, [Online]. Available: <https://doi.org/10.1016/j.xinn.2024.100582> [Accessed: 2025-04-28]

[7] undefined. "Emissions Gap Report 2023: Broken Record – Temperatures hit new highs, yet world fails to cut emissions (again)" 2023, [Online]. Available: <https://doi.org/10.59117/20.500.11822/43922> [Accessed: 2025-04-28]

[8] J. Q. L. L. J. S. J. P. P. S. R. Z. Y. D. E. A. "Large AI Models in Health Informatics: Applications, Challenges, and the Future" IEEE Journal of Biomedical and Health Informatics, 2023, [Online]. Available: <https://doi.org/10.1109/jbhi.2023.3316750> [Accessed: 2025-04-28]

[9] J. B. T. H. J. M. A. H. H. F. P. M. J. M. R. B. E. A. "The contribution of digital health to net zero patient care in allergic diseases: From concept to practice" Allergy, 2023, [Online]. Available: <https://doi.org/10.1111/all.15880> [Accessed: 2025-04-28]

[10] P. N. S. T. A. N. F. H. T. V. P. C. Q. C. A. M. "Climate change resilient health facilities: a scoping review of case studies in low and middle-income countries" Environmental Research Letters, 2024, [Online]. Available: <https://doi.org/10.1088/1748-9326/ad472b>

[11] H. H. C. N. V. C. P. K. P. B. M. "How are health systems in sub-Saharan Africa adapting to protect human health from climate change threats? A scoping review and case study" The Lancet Planetary Health, 2024, [Online]. Available: [https://doi.org/10.1016/s25425196\(24\)00075-5](https://doi.org/10.1016/s25425196(24)00075-5) [Accessed: 2025-04-28]

[12] C. S. S. L. "Sustainability is a core outcome: filling research gaps in sustainable perioperative care" Anaesthesia, 2024, [Online]. Available: <https://doi.org/10.1111/anae.16218>

[13] undefined. "Health at a Glance 2023" Health at a glance, 2023, [Online]. Available: <https://doi.org/10.1787/7a7afb35-en>

[14] F. S. G. M. "Sustainability and Resilience in the Extended Value Chain: The Case of STMicroelectronics" International business and management series, 2023, [Online]. Available: <https://doi.org/10.1108/s1876-066x20230000037011> [Accessed: 2025-04-28]

[15] K. O. G. W. T. M. A. M. A. A. C. A. C. Y. K. D. E. A. "The Potential of Generative Artificial Intelligence Across Disciplines: Perspectives and Future Directions" Journal of Computer Information Systems, 2023, [Online]. Available: <https://doi.org/10.1080/08874417.2023.2261010> [Accessed: 2025-04-28]

[16] J. D. K. P. M. A. H. L. K. R. "The impact of ChatGPT on higher education" Frontiers in Education, 2023, [Online]. Available: <https://doi.org/10.3389/feduc.2023.1206936>

[17] C. M. F. O. D. P. L. J. A. P. A. M. L. A. D. D. B. E. A. "Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality" New England Journal of Medicine, 2023, [Online]. Available: <https://doi.org/10.1056/nejmoa2206916> [Accessed: 2025-04-28]

[18] E. M. B. M. K. A. T. L. S. H. Y. S. C. S. M. "The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture" Agriculture, 2023, [Online]. Available: <https://doi.org/10.3390/agriculture13081593> [Accessed: 2025-04-28]

[19] B. K. "Global challenges and opportunities in health promotion" Proceedings of the International Congress Public Health - Achievements and Challenges - zbornik radova, 2024, [Online].

<https://www.semanticscholar.org/paper/bce0d1aea33eb6a60140ae55c6a164aab5840c49>

1. [20] M. I. S. S. "Indigenous Beliefs, Knowledge and Practices on Fishing and Climate Change Adaptation" International Review of Social Sciences Research, 2023, [Online]. Available: <https://www.semanticscholar.org/paper/2ac6dbe5a5c0aa4938c0260c4da7a80180f1666d>