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Abstract - This work proposes a machine learning-driven adaptive framework for real-time detection and mitigation of
FDIASs in critical smart grid infrastructure. The adaptive nature of the model addresses evolving False Data Injection Attacks
and provides a more secure and viable method of securing critical smart grid infrastructure from the injection of false data
attacks. The fast digital transformation of smart grid infrastructure has created cybersecurity vulnerabilities. Conventional
detection models are challenged, and the requirement of a complex solution is required to handle evolving attacks on critical
smart grid infirastructure. The technical contributions of this research include continuous update of the model based on the
evolving attacks. The model can adapt without retraining from scratch. This model is therefore applicable in future
implementations of smart grids, where such models can be adopted by countries who wish to implement smart cities and utility
companies in developing countries.
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I.  INTRODUCTION
A. Background

Smart grids have evolved from traditional power
systems into smart grids. This has largely introduced
bi-directional communication, automated control and
real time monitoring as advanced functionalities of
smart grids. Reliability and sustainability are enhanced
leading to improved efficiency. Vulnerability to
malicious attacks in smart grids is due to the
dependence of Information Technology. [2] Integration
of cyber security components exposes the grid to
various cybersecurity threats but notably False Data
Injection Attacks (FDIAs).

The usage of smart grids due to Information
Communication Technology dependencies has also
increased the level of cyber security importance[10].
Real-time monitoring is unavoidable given the fast
acceptance of renewable energy sources inside the
traditional power infrastructure[11].
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B. Problem Statement

Attacks targeted at critical infrastructure of the smart
grid are on the increase, raising numerous inadequacies
[9]. Despite smart grids enhancing efficiency in
operations, they have also presented a risk due to the
cyber-attacks that lie in wait. This has significantly
made the grid vulnerable to FDIAs which are the most
common threats to critical infrastructure of smart grids.
The existing implementations are static and rely on
labelled data making them non adaptive to various
FDIAs. There is need to develop a machine learning
driven adaptive model that addresses and responds to
the detection and mitigation of FDIAs on smart grid
critical infrastructure.

C. Research Aim and Objectives

The aim of the research is to develop a real-time
anomaly-driven cyber resilience adaptive machine
learning-based defense against false data injection
attacks in smart grids. The specific objectives include:
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e Develop a real time anomaly driven cyber
resilience adaptive machine learning based
defense for the detection and mitigation of
FDIAs.

e Assess the FDIAs of critical smart grid
infrastructure in real time.

e Evaluate the performance of the real time
anomaly driven cyber resilience adaptive
machine learning based defense for the
detection and mitigation of FDIAs

o Assess the adaptability of the real time anomaly
driven cyber resilience adaptive machine
learning based defense for the detection and
mitigation of FDIAs in varied smart grid
conditions.

II. LITERATURE REVIEW

A. Search Inclusion Criteria

The literature considered under this review
complied with the PRISMA guidelines for systematic
reviews. Databases used in the review included IEEE
Xplore, ScienceDirect, SpringerLink. The focus was
only on peer-reviewed papers that were published
between 2016 and 2024 were considered. Real time
detection, real time mitigation and machine learning
adaptive model were some of the keywords
considered when filtering results. The review
produced 54 relevant articles after the extensive
scrutiny of the articles.

B. Search Exclusion Criteria

Papers that did not contain the availability of full
text and papers that were not written in English could
not be included in the search. Additionally, editorials,
keynote writeups, and book chapters were not
included in the search for the literature. The Nature of
Smart Grids A smart grid is a complex intelligent
network of electrical lines and equipment connecting
buses, nodes, generators, control center, etc. [13].
While most existing techniques for protecting power
grid systems were designed to ensure system
reliability (i.e., against random failures), recently there
have been growing concerns in smart grid initiatives
on the protection against malicious cyber-attacks. The
smart grid, as a cyber-physical critical infrastructure,
boasts higher reliability, efficiency, and consumer-
centricity in an environment of increasing power
demand. Acquisition, transmission, and consumption
of high-granularity real-time power system data are
facilitated through the integration of communications,
computing, and advanced control technologies [2].
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C. Attacks on the Smart Grid

Since smart grids depend on a complex cyberspace of
computers, software, and communication
technologies and components are connected to an
open network, this makes them vulnerable and a
target to attacks. An attack from the adversary can
compromise meters and inject data. False data-
injection attacks can affect key functional modules in
the smart grid such as energy price and energy
distribution.

False data injection attacks (FDIAs) have lately been
found as a major type of cyber-attacks aiming at state
estimation and monitoring systems of smart grids.
These cyberattacks compromise the readings of
several smart grid meters in order to mislead control
system operations.

Figure 1: An Attack on The Smart Grid

D. Detection Methods Used in Smart Grid
Attacks

Various research has been developed on proposing
various FDI attack scenarios and developing the
corresponding detection strategies. Kim et al.
formulated the least effort attack strategy and
proposed a protection-based defense scheme and a
detection-based defense scheme [26]. Hossain et al.
modelled the attack strategy using the Gaussian
process and used machine learning methods for
attack detection [27]. Unsal et al. developed an FDI
detection mechanism by using the properties of the
low dimensionality of measurements and sparsity of
attacks. The equivalent measurement transformation
and the largest weighted residual method were
integrated for detecting the FDI attacks [28].

[40] Xiangyu et al conducted research related to the
dynamic detection of false data injection attacks in
the smart grid using deep learning. In this research
work, the researchers proposed an approach deep
learning-based framework to detect injected data
measurement. This also included a time series
anomaly detector that uses a convolutional neural
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network (CNN) and a long short-term memory (LSTM)
network.

[14] Yang Li et al in their study stated that traditional
methods using centralized detection methods are
unable to cope with the growth of the volume of data
in a smart grid since these grids are becoming larger
and generating more data.

Hence, studies have mainly bordered on static FDI
attack detection with an assumption that attackers
have a certain level of knowledge concerning the
topology of the power system and can only inject a
limited number of bad data points [41].

III. METHODOLOGY

A. Research Design

The research design in this work included identifying
the problem, determining the objectives, assessing
and evaluating the models in use.

IV. DISCUSSION

Assessing the models in use required a critical analysis
of performance and constraints to check whether the
models satisfied the specified objectives. This
procedure ascertained whether the models could
consistently solve the problem at hand in the
research work.

Evaluation of the models in use was based on
acceptable performance metrics. This guaranteed
that the models could be tested for realistic uses and
that the models generated could be enhanced as and
when required.

V. CONCLUSION

This study reviewed models in use for the detection
and mitigation of real time anomaly driven cyber
resilience.

By combing through the literature review, the study
proposes a real time anomaly driven cyber resilience
adaptive machine learning based defense for the
detection and mitigation of FDIAs.
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VI. RECOMMENDATIONS

It is important for False Data Injection Attacks to be
constantly monitored on the smart grid through use
of a real-time anomaly driven cyber resilience adaptive
machine learning based defense so that the attacks
are not only detected but mitigated in real time.
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Fig 2: Technical Operations of Proposed Detection
Model in a Smart Grid
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