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Abstract—This  research  presents the
development and implementation of a Machine
Learning Decision Support System (ML-DSS)
aimed at enhancing child health protection in
Zambia. The system utilizes a predictive framework
based on a star-schema database architecture,
which includes a fact table containing child-level
data linked to various health and educational
indicators. Specifically, the ML-DSS focuses on
binary classification tasks to assess school dropout
risks and stunting risks among children, employing
deep learning techniques facilitated by TensorFlow.
Key results highlight the model’s performance
metrics, demonstrating its potential to inform early
interventions in child health and education. The
research identifies critical factors influencing
dropout rates and stunting, emphasizing the
significance of nutrition and school attendance.
Despite limitations, including the absence of
detailed household financial data, the model
provides a robust tool for NGOs to enhance their
programming and improve child health outcomes.
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Binary classification, School dropout risk, Stunting
risk, TensorFlow Deep Learning, Fact & Dimension
Tables, Early intervention, NGOs programming,
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I.  INTRODUCTION

How Machine Learning Decision Support Systems
in Child Health work is that they use some algorithms
in order to analyze datasets like health records,

environmental data, etc. They use them in real time,
to be able to predict risks pertaining to growth
challenges and disease outbreaks. Such systems can
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recommend preventative actions or measures like
flagging children at-risk for early interventions.

Traditional M&E Systems operate much slower
due to manual and structured processes to monitor
health metrics and evaluate programs’ or projects’
effectiveness like periodic surveys, checklists and
reviews led by humans. In this way, the traditional
monitoring and evaluation systems require much more
time, are prone to human error, and are not flexible for
adaptation to rapid changes or developments; of which
this usually has the potential to delay intervention
response to health threats.

Traditional M&E Systems operate much slower
due to manual processes. They rely on human
professionals and expertise, and although they can be
consistent, they’re less dynamic. In terms of initial cost
investment, they cost less but are likely to require some
ongoing labor resources. The strength of traditional
M&E Systems lies in stable and consistent
environments, but they’re unfortunately less flexible to
new data or unexpected dimensions. Although these
systems have less risks to technical biases, they fall
vulnerable to subjective errors and inconsistencies.
They usually operate on standalone basis, and can be
improved with some digital upgrades.

Machine Learning Decision Support Systems are
about rapid analysis and real-time predictions, while
presenting high accuracy with good quality data.
They’re able to improve even further with more
learning. Initial Investment Cost for these systems is
much higher but gradually becomes lower in the long
term (operationally). Machine Learning Decision
Support Systems are very good at handling data on a
large-scale and around transformational or evolving
trends (dynamics). They can be more prone to
algorithmic biases or breaches of privacy, but these can
be mitigated by regulations and standards, similar to
GDPR. In terms of integration-ability or characteristics,
they’re able to complement different tools to achieve
holistic health strategies.

While Traditional M&E Systems would mostly be
used for evaluations that are routine work, e.g. growth
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monitoring and program assessments, Machine
Learning Decision Support Systems would be used for
diagnostics, early intervention and risk prediction. The
prior gives priority to accessibility and decisions which
are context specific, while the latter emphasizes the
need for mitigation of bias and data privacy for the
protection of vulnerable populations. Machine
Learning Decision Support Systems achieve data
privacy by infusing anonymity of data.

I. RELATED WORKS

A. Involvementof Machine Learning Tools
in Healthcare Decision Making

The review’s conclusion was that Machine Learning is
inevitable in and vital for healthcare, with continuous
advancements in precision medicine and Artificial
Intelligence integration. Continuous growth of the
phenomena was further expected in pandemics and
resource management.

The authors ascertained that healthcare had been
transformed by machine learning by infusion of
computational decision making in difficult industries
and sectors. It’s very evident from this literature review
that machine learning had become an integral
component of biomedicine, driving and proving the
possibility of accurate and cost-effective decision
making.

B. Machine  Learning-based  clinical
decision support systems for pregnancy
care: A systematic review

Du et al., 2023 conducted a systematic review focusing
on using machine learning in Clinical Decision Support
Systems for prenatal care. The potential of CDSS to
enhance healthcare delivery was highlighted, and this
would be achieved through error reduction, improving
diagnostics, and decision support throughout
pregnancy.

The review was aimed at the identification of work in
this field and to magnify some areas that would need
further research: with its rationale being that machine
learning CDSSs were appreciated and valued for
optimizing the outcome of pregnancies, and yet bias,
transparency and real-world practicability were yet to
be explored much more.
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C. Review of Medical Decision Support and
Machine-Learning Methods

The article reflected early developments of Computer
Decision Support in Medicine dating far back as the
1950s and evolving through systems like INTERNIST
and MYCIN around the 1970s. In its evolution, it had
been explored through Veterinary Medicine and
Human Medicine. While the authors did touch on three
types of machine learning categories (supervised;
unsupervised; and reinforcement learning), they
looked into the three detailed kinds of supervised
learning, being Naive Bayes, Decision Trees and
Neural Networks. The subject three algorithms were
marked off to be power tools for predicting diseases
and were selected based on the types of data &
problem complexity.

Emphasis was given on the importance of the quality
of training data, and that features should be selected
and transformed in order to gain good performance of
the system. It was established that cross-validation
ensures model reliability through testing of data
subsets. Accuracy, sensitivity and specificity were
used for performance metrics evaluation, and an
example result was that Naive Bayes scored about
88.4% accuracy on prediction of coronary heart
disease.

D. KIDMATCH to distinguish between
MIS-C, Kawasaki disease and other
febrile ilnesses in children

Lam et al., 2022 explored development of a machine
learning model built to differentiate three diseases
(MIS-C; Kawasaki; and other febrile illnesses)
through the usage of some clinical signs and
laboratory data gathered from testing. The model
architecture comprised of neural networks phased in
two stages, where TensorFlow and logistic regression
were used for baseline training.

From one thousand five hundred and seventeen
patients (1517; diagnosed with either of the three
illnesses) and split into a ratio of 80:20 for training and
validation, a median AUC of 98.8% and 96.0%
respectively, got achieved during the internal
validation process. For detection of MIS-C the neural
network  demonstrated high  sensitivity and
specification, of 100%.

The prediction confidence was enhanced by
incorporation of a conformal prediction framework so
that in the process, and to work well, test samples
could be rejected out of the distribution of the training
set. The authors validated KIDMATCH using some
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external cohorts, which resulted in consistent
performance among a number of hospitals with a
confidence in predictions of MIS-C.

E. Machine Learning clinical decision
support systems for surveillance: a study
on pertussis and RSV in children

De Laco et al., 2023, carried out a case study of
Pertussis and RSV infection in children, with
contributing factors being that traditional clinical case
definitions for pertussis had low specificity and not
much utilities for care; there was no RSV surveillance,
syndromic surveillance that could be scaled for RSV
and pertussis; and Machine-Learning Clinical
Decision Support Systems (ML-CDSS) for infectious
diseases were emerging at the same time, but that
unfortunately a very few of them targeted emergency
or primary care type of settings.

For the study design and methods, the authors used
infants under the age of one, who presented respiratory
symptoms at an Italian pediatric ED between August
2015 and June 2020. They had collected the syndromic
features of cough, stridor, hypoxia and emesis by
means of a structured questionnaire. They also
collected routine labs and multiplex PCR confirmation
for B.pertussis and RSV, after which they developed
four (4) models. The models they developed were:
Pertussis Model 1A: syndromic + lab data; Pertussis
Model 1B: syndromic data only; RSV Model 2A:
syndromic + lab data; RSV Model 2B: syndromic data
only.

In terms of performance, they found that Model 1A
would miss about fourteen (14) pertussis cases and
misdiagnose about fourteen (14). Model 2A would
miss about six (6) RSV cases and misdiagnose about
thirty-one (31).

TABLE 1 SUMMARY PRESENTATION OF
RELATED WORKS
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Figure 1: Comparison of Related Works

II. METHODOLOGY

This study adopts a supervised machine learning
approach using deep learning (specifically
feedforward neural networks) for classification. Deep
learning got to be the choice because of its capacity to
model complex, non-linear relationships across
multiple variables, which is well-suited for health and
education related prediction problems.

Traditional logistic regression and the decision tree
approaches were considered but turned down due to:

. Limited performance on high-dimensional
and non-linear data.
. Less flexibility when it comes to capturing

interaction effects between school and health
variables.

TensorFlow was selected for development of the
model due to its scalability, GPU support, and
community support.

The methodological approach used incorporates a
close cohesion and synergy of the theoretical
framework, system design, and research objectives,
enabling a robust ML-DSS for enhanced child-health
protection in Zambia.

A. Research Data and Datasets

The main and primary dataset consists of child
records collected by NGOs across the different
regions of Zambia. Each child record is linked to
their respective school and health post.

Main Tables:

child (fact table) [4]: demographics, meals,
attendance, vaccination, stunted status, dropout
status.

school (dimension) [6]: school name, shift type,
teacher-pupil ratio.
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health post (dimension) [5]: availability of services,
distance.

Targeted Variables:

has_dropped_out (binary)

stunted (binary)

The data is synthetically augmented where necessary
so real-world distributions are reasonably simulated
while preserving privacy.
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Figure 2: Star-Schema Entity Relationship Diagram of the
Prototype

Data collection methods and data analysis
techniques

Data collection:

A. Sourced from NGOs’ existing child
welfare tracking systems.

B. Supplemented with synthetic data based
on known patterns from some UNICEF
and WHO reports.

Data Analysis Techniques:

Data preprocessing: normalization, handling of
missing values.

Feature selection using correlation analysis and
domain knowledge.

Training/Validation split (80/20).
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Model evaluation using precision, recall, F1-score,
and confusion matrix.
Analysis also includes comparison with baseline
models (e.g., logistic regression) to justify the
deep learning approach.
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III. PROTOTYPE, DATA, EXPERIMENTS, AND
IMPLEMENTATION

The system implements a supervised machine learning
approach using a feedforward neural network. The
model architecture is based on a multi-layer perceptron
(MLP), optimized using the Adam optimizer and
trained with binary cross-entropy as the loss function.
Categorical data was encoded using label encoding,
and numeric features were standardized using
StandardScaler to ensure uniform scale and
convergence stability during training.

Data was split into training and test sets using an 80:20
ratio, ensuring both target classes are well represented.
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Although the current implementation uses static
hyperparameters (e.g., fixed learning rate and batch
size), the architecture allows for extension to grid
search or other hyperparameter tuning mechanisms.

IV. DESIGNED
FRAMEWORK

PROTOTYPE, MODEL

The prototype comprises of two parallel ANNS:
Dropout Prediction ANN (annd)

Stunting Prediction ANN (anns)

Each model includes:
e Input Layer: Accepts 43 features derived
from merged and preprocessed data.

e Two Hidden Layers: 43 and 21 units
respectively, each using ReLU activation
to allow the network to learn non-linear
patterns.

e  Qutput Layer: A single neuron with a
sigmoid activation to yield probabilities
for binary classification (0 = No, 1 = Yes).

e The structure is pyramid-shaped, with the
first layer as the number of input features
and the subsequent layers being the
previous number divided by two.
e  The models were implemented using
TensorFlow’s Sequential Application
Programming Interface. After training for
100 epochs with a batch size of 1000, the
models were serialized in .keras format
for reuse. Feature scalers were saved
separately for consistent preprocessing
during deployment.

V.  RESULTS AND DISCUSSIONS

The results presented in this section are derived
from the training and testing of two Artificial Neural
Networks (ANNs); one for predicting school-
dropout and the other for predicting stunted growth.
Both models were trained over 100 epochs, with
training accuracy for the dropout model reaching
87%, and 86% for the stunting model.

On the test data, the performance was as follows:
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Dropout ANN:
o Test Accuracy: 75%

e Confusion Matrix:
*  True Negatives (TN): 2021
»  False Positives (FP): 2073
+  False Negatives (FN): 1925

e True Positives (TP): 9981

Stunting ANN:
Test Accuracy: 74%

Confusion Matrix:

True Negatives (TN): 6075
False Positives (FP): 1980
False Negatives (FN): 2040
True Positives (TP): 5905

The confusion matrices show that the models were
effective in identifying a large number of positive
cases (dropouts and stunted children), but that they
also misclassified a notable number of instances.

A. ANALYSIS OF
RESULTS/PERFORMANCE METRICS

While the training accuracy was quite high for both
models (above 85%), the test accuracies of 75% and
74% suggest moderate generalization. This indicates
that the models are learning relevant patterns from the
training data.

Observations:
The high number of false positives in both models

may lead to unnecessary interventions - which is not
necessarily a bad thing.

The false negatives, although fewer, are more critical
as they represent children at risk who are missed by
the system.

ICICT2025



Seventh International Conference in Information and Communication Technologies, Lusaka, Zambia
15" to 16™ October 2025

These results are typical in real-world classification
tasks where imbalanced class distributions and
overlapping feature spaces challenge model precision.

Although additional performance metrics such as
precision, recall, F1-score, and AUC-ROC were not
calculated in this iteration, they are important for
future versions. Precision and recall especially would
provide better insight into how well the model
balances risk of over- an under- prediction.

B. COMPARISON TO RELATED WORKS

Most existing research in sub-Saharan Africa
predicting dropout or malnutrition risk has relied on
traditional machine learning models such as logistic
regression, decision trees, or support vector machines.
These models typically report test accuracies between
65% and 75%, with limited ability to capture
complex, nonlinear relationships among features.

For example, Mutisya et al. (2019) applied logistic
regression to predict school dropout among vulnerable
children in Kenya, achieving around 70% accuracy.
Similarly, Osei and Appiahene (2020) used decision
trees to analyze malnutrition predictors in Ghana,
finding moderately accurate but highly interpretable
models. However, these approaches struggled to
capture multifactorial dependencies across health,
education, and household characteristics.

This project’s use of deep learning—specifically,
fully connected ANNs—demonstrates a modest
improvement over the baseline models, with
accuracies near 75% on test data and significantly
higher training accuracies. The capability of ANNs to
model higher-order feature interactions may account
for this performance boost, as shown in recent health-
focused deep learning applications in Africa
(Abdulrahman et al., 2021; Gichoya et al., 2022).

C. IMPLICATIONS OF RESULTS

The performance of the models has several
implications for deployment in real-world NGO
programming in Zambia:

Early Warning System:
The models can be used as part of a digital
decision support tool to flag high-risk children for
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further assessment by field staff or community
workers.

Intervention Planning:

By identifying at-risk children using structured
data, NGOs can better allocate limited resources—
e.g., school feeding programs, psychosocial
support, or community outreach.

Operational Limitations:

High false positives could result in unnecessary
interventions, requiring a human-in-the-loop
validation process. Conversely, false negatives
suggest that models should be supplemented with
other indicators or community feedback
mechanisms.

Zambian Contextualization:

Factors such as meals per day, school
attendance, family income, and facility type
were strong predictors. These align with known
determinants of educational attainment and child
health in Zambia, supporting the validity of the
model’s outcomes.

VI. CONCLUSION

The study adopted a star-schema data warehouse
integrating: Child demographics & nutrition; School
attendance & performance; and Health-post records
(vaccinations, growth), with a process of execution or
implementation in this order, respectively: ETL —
feature engineering — feed-forward neural network
— Dbinary risk predictions (dropout, stunting) —
decision-support dashboard & alerts.

Qualitatively, it promotes and relies on a Theory of
Change linking the infrastructure of the data, model
outputs, stakeholder training to — targeted
interventions — long-term impact (reduced stunting,
improved retention).

The traditional models and mechanisms of machine
learning (logistic regression, decision trees) exercised
in similar African settings reported around 65-75%
accuracy, while the deep-learning ANNs developed in
this study demonstrated a modest but meaningful
improvement, likely to be due to the capacity of ANNs
to capture nonlinear and high-order feature
interactions.
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In future, it would be ideal to encorporate
parental/household socioeconomic data and social-
protection metrics, which the Parent dimensional
Table would have likely achieved had it not been a
challenge to gather reliable data for integration. The
study also concluded on the need to explore some
time-series models, similar to LSTM, for dynamic risk
tracking. In terms of actual implementation of the
model/framework, it would serve well deployed for
evaluation in live NGO workflows centered on the
same facets of developmental programming for
continuous real-world feedback.

Explainability could also be enhanced (feature-
importance, ROC/AUC curves) to maximize
stakeholder trust and interpretability.

ACADEMIC CONTRIBUTION TO THE BODY OF
KNOWLEDGE/NOVELTY

The contribution of this study to the body of
knowledge is bridging traditional static M&E
frameworks with dynamic, real-time data-driven
decision support; by use of fully connected ANNs—
demonstrating a modest improvement over the
baseline models of logistic regression, decision trees,
or support vector machines; with accuracies near 75%
on test data and significantly higher on training
accuracies.
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