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Demystifying Cryptocurrency Mining Attacks: A Semi-

supervised Learning Approach Based on Digital Forensics and 

Dynamic Network Characteristics 
 

Abstract—Cryptocurrencies have emerged as a new form of 

digital money that has not escaped the eyes of cyber-attackers. 

Traditionally, they have been maliciously used as a medium of 

exchange for proceeds of crime in the cyber dark-market by cyber-

criminals. However, cyber-criminals have devised an exploitative 

technique of directly acquiring cryptocurrencies from benign 

users' CPUs without their knowledge through a process called 

crypto mining. The presence of crypto mining activities in a 

network is often an indicator of compromise of illegal usage of 

network resources for crypto mining purposes. Crypto mining has 

had a financial toll on victims such as corporate networks and 

individual home users. This paper addresses the detection of 

crypto mining attacks in a generic network environment using 

dynamic network characteristics. It tackles an in-depth overview 

of crypto mining operational details and proposes a semi-

supervised machine learning approach to detection using various 

crypto mining features derived from complex network 

characteristics.  The results demonstrate that the integration 

of semi-supervised learning with complex network theory 

modeling is effective at detecting crypto mining activities in 

a network environment. Such an approach is helpful during 

security mitigation by network security administrators and 

law enforcement agencies. 

Keywords—bitcoin, cryptocurrency, cyber-attack, crypto mining, 

semi-supervised learning, complex networks 

I. Introduction 

The general aim of conventional cyberattacks has generally 
been to obtain monetary proceeds of the associated cybercrime. 
Attackers have had the challenge of acquiring these monetary 
proceeds with little or no monetary trail since conventional 
payments leave a trail of traceable financial activities 
[1].Monetary activity trails have enabled law enforcement 
agencies to track and prosecute cybercriminals. As such, 
cybercriminals have sought ways to avoid conventional 
monteray payment systems. Cryptocurrencies have alleviated 
this challenge as they provide for privacy and anonymity [2]. 

 
1 Crypto mining is a process of using the resources of a computer system to 

mine cryptocurrencies. 

The strong privacy provided in cryptocurrencies makes it almost 
impossible to trace financial payments [3]. As such, 
cryptocurrencies have become a de facto method of payments in 
most finance-related cyber-attacks [4], a trend not uncommon in 
crypto-ransomware attacks. 

Victims of recent cybercrimes (such as ransomware attacks) 
have had to make payments in cryptocurrencies such as Bitcoin. 
Since these cryptocurrencies are stored on the victim’s 
computers, attackers have now moved on to attack users of 
cryptocurrencies in order to extract cryptocurrencies from 
digital wallets as was evidenced in various attacks [5]. 
Furthermore, it is not uncommon to find financial malware that 
seeks to steal cryptocurrencies from targeted users as an extra 
functionality [6]. Since not all targeted users harbor 
cryptocurrencies, attackers have devised a technique of directly 
generating cryptocurrencies from the victims' CPU (crypto 
mining1) by enlisting them to a mining pool. The 
cryptocurrencies are generated by installable malware or via 
browser-based crypto mining. Victims are enlisted in a crypto 
mining pool since solo mining is not efficient [7]. As such, 
corporate or enterprise networks are attractive to crypto mining 
attackers because they provide a pool of devices for crypto 
mining. It is thus not uncommon to find illegal crypto mining 
cloud computing and IoT environments [8] as well as critical 
infrastructure systems such as SCADA [9]. Illegal crypto-
mining has since been on the rise and costed victims millions of 
dollars [10]. Consequently, the year 2018 saw the growth of 
crypto mining malware by 4,000% [11]. As such, crypto mining 
attacks have proven to be a force to reckon with which can 
longer be avoided even as attackers have been eschewing the 
infamous ransomware attacks [12]. The diagram in Figure 1 
shows the decline in ransomware attacks versus the rise in crypto 
mining attacks according to the IBM-X-Force Threat 
Intelligence Index 2019 [13]. 
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Fig. 1. Crypto mining vs Ransomware attacks in 2018 [13] 

Crypto mining is taking over ransomware owing to its ease 
of administration; easily proliferated by phishing emails, no user 
input required and the difficulty associated with tracing the 
perpetrators. These advantages have seen an increase in the 
stealthier attacks, i.e. crypto mining, by 450% even as 
cybercriminals pivot from the common ransomware attacks 
[14]. Crypto mining attacks present a million-dollar industry 
[15]. 

In Africa, crypto mining is particularly prevalent in Ethiopia, 
Tanzania, and Zambia which account for 3 of the top-5 countries 
largely impacted by crypto-mining attacks, according to a 
Microsoft report [16]. The most impacted victims are SMEs as 
the security therein is not as robust as in larger corporations. 

Like all malware activities and cyberattacks, crypto mining 
activities generate noise in the form of network traffic. However, 
the types of network characteristics associated with these types 
of attacks are peculiar to crypto mining in that victims enlisted 
to a mining pool or botnet needs to communicate with the 
associated C2 servers and mining servers. As such, the detection 
of crypto mining activities in a network environment calls for an 
approach that takes into consideration these network 
characteristics.  This paper addresses the detection of crypto 
mining attacks in a generic network environment using dynamic 
network characteristics. It tackles an in-depth overview of 
crypto mining operational details and proposes a machine 
learning approach to detection using various crypto mining 
features derived from the network characteristics. The Small-
World network models [17] of complex network evolution 
theory are adopted for attack modeling and we use a semi-
supervised approach to machine learning for detection. 

The rest of the paper is organized as follows; Section II 
presents the related works while the methodology and proposed 
detection framework are brought forth in Section III. The results 
and the analyses thereof real-world in Section IV and the 
conclusion is drawn in Section V. 

II. Related Works 

Even though crypto-mining attacks are a fairly new 
phenomenon, they have attracted significant attention in the 
security landscape. Some research works have concentrated on 
crypto mining in general computer systems [18] whilst others 
have narrowed the scope to critical infrastructure and IoT [19]. 
Muhammad et al. [20] propose an end-to-end analysis of 
browser-based crypto mining by statically and dynamically 
examining the rise of crypto mining in the real world cases. The 
proposed approach inspects the traversing traffic between web-
sockets without blacklisting of IP addresses. They achieve a 
detection accuracy of 96.4% using code analysis. 

Zareh and Shahriari  [21] propose a host-based approach to 
crypto mining called BotcoinTrap. Modeling via dynamic 
analysis of executable binary crypto mining files to detect 
Bitcoin-mining botnets is adopted. The advantage of this 
approach is that it can detect Bitcoin mining botnets at the lowest 
level of execution. The Bitcoin block header is centrally used as 
the pivotal piece of information in this detection methodology. 
The drawback of this approach is that it specifically applies only 
to the detection of Bitcoin miners, whereas the crypto mining 
landscape has seen the emerging of competing and easy-to-mine 
cryptocurrencies such a Monero and Ethereum. 

Eskandari et al. [22] examine recent trends towards in-
browser mining of cryptocurrencies. They concentrate their 
efforts on the mining of Monero cryptocurrency via CoinHive 
and those of similar code- bases. In their model, a web user visits 
a vulnerable site infected with JavaScript code that executes on 
the client-side browser, thus mining a cryptocurrency without 
the user's consent. They further survey the crypto mining 
landscape in order to conduct measurements to establish the 
prevalence and profitability thereof. They outline the ethical 
framework for classifying the attack as an inherent attack or 
business opportunity. They delineate the various stages involved 
in the process crypto mining process and thereafter brief the 
various terms associated with crypto mining. However, their 
approach does not address the systematic detection of crypto 
mining. 

Carlin et al. [23] approach crypto mining detection using 
dynamic opcode analysis on non-executable files. They use a 
specified dataset to achieve high detection rates of browser-
based crypto mining using Random forest (RF) as the preferred 
classification algorithm. Their model distinguishes between 
crypto mining websites, weaponized benign crypto mining 
websites, de-weaponized crypto mining websites, and real-
world benign crypto mining websites. As such, their technique 
offers an opportunity not only to detect but to prevent as well as 
mitigate crypto-mining attacks. 

Veselý and Žádník [24] present an in-depth analysis of the 
crypto mining operation. They designed and implemented a 
passive-active flow monitoring and catalog to detect crypto-
mining activities from compromised devices in a network. They 
tested the feasibility of their approaches to real-life data where 
passive-active detection is capable of discovering emerging or 
deliberately hidden crypto mining pools. 

Table I summarizes the differences between our prosed model 

and existing approaches. 

 
As can be seen in Table I, our modeling and detection 

approach has several advantages not limited to dependency on 
the prevailing attack vector (i.e. browser-based or installable 
binary-based) and incorporation of complex network modeling 
for effective detection. 
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TABLE I. COMPARISON WITH OTHER WORKS 

Attribute/ 

Model 

Flexibility 

to Large-

Scale 

Networks 

Dynamic 

Complex 

Network 

modeling 

Attack 

Network 

Formulation 

Evaluation 

of 

Detection 

Model 

Not 

Dependent on 

Attack Vector 

Saad et. 

Al [20] 
✓ ✗ ✓ ✓ ✗ 

Zareh et. 

al [21] 
✗ ✗ ✗ ✓ ✓ 

Eskandari 

et. al [22] 
✓ ✗ ✗ ✗ ✗ 

Carlin et. 

al [23] 
✓ ✗ ✗ ✓ ✗ 

Veselý et. 

al [24] 
✓ ✗ ✗ ✓ ✓ 

Musch et. 

al [29] 
✓ ✗ ✗ ✓ ✗ 

Proposed 

Model 
✓ ✓ ✓ ✓ ✓ 

 

III. Methodology and Proposed Framework 

The enlisting of vulnerable and exploitable devices to a 
crypto mining pool is a dynamic process that can be viewed as 
an evolution of node-addition or deletion in an attack graph. 

Since the nodes in the mining pool interact one with the other 
and with the central server, the system can thus be characterized 
by vertex degrees and clustering coefficients. It is on this 
premise that we employ the use of Small-World network models 
of complex network theory to depict the behaviour of the attack 
network and deduce the corresponding features for purposes of 
detection. The diagram in Figure 2 shows a time-slice crypto-
mining depicting the initialization and growth of a crypto mining 
pool in a target network. 

 
2 Proof-of-work refers to the cryptographic computational puzzle that miners 

have to solve in order to be issued a crypto currency unit. 
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Fig. 2. Dynamic growth of crypto mining pool at various stages 
of the crypto mining process 

 The first phase 𝑺𝟎 represents the state of the targeted network 
system before any device is listed to a crypto mining pool. At 
this phase, the devices in the network are only susceptible to 
crypto mining but not yet compromised. As such, the vertex 
degree and clustering are equal to zero. In phase 𝑺𝟏, vulnerable 
nodes are identified and consequently added to the crypto 
mining pool in phase 𝑺𝟐. It is worth noting that at this stage, the 
vertex degree and clustering coefficients are now greater than 
zero.  

𝑺𝑛(𝑡) ⟶ 𝑺𝑛+1(𝑡 + 1) ∶ = {
(𝑁𝑡 ⋃ 𝑛𝑡+1

+ ) − (𝑛𝑡+1
− )

⋅
(𝐸𝑡 ⋃ 𝑒𝑡+1

+ ) − (𝑒𝑡+1
− )

                 (1) 

 Phase 𝑺𝟑 represents active crypto mining where the enlisted 

victims in the crypto mining pool are coordinating and working 
together towards the associated proof-of-work2. Equation (1) 
depicts the dynamic transitions of a victim device enlisted to a 
mining pool at a point in time as echoed in Figure 2. 

As the state of the enlisted victim devices transitions from state 
𝑺𝟎 to 𝑺𝒏, a series of network traffic is generated which we use 
to derived features for the detection process. 

 Members enlisted in a crypto mining pool used dedicated 
protocols to coordinate the distributed mining process. The 3 
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Fig. 3. The semi-supervised approach to crypto mining detection 
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common TCP-based crypto mining protocols are GetWork, 
GetBlockTemplate, and Stratum protocol [25]. Other traffic 
details found in crypto mining pools include registration and 
authentication traffic, recurrent assignment of work packages 
provided by the crypto mining server. It is from these dynamic 
traffic details that we draw features to devise a detection 
methodology. In light of this, we present a semi-supervised 
learning approach to crypto mining detection that takes 
advantage of the huge amount of unclassified dataset [26] to 
perform classification of suspicious hosts participating in crypto 
mining activities and using few labeled instances from the 
labeled data. The proposed detection framework is shown in 
Figure 3. 

 Our semi-supervised approach shown in Figure 3 shows that 
in addition to unlabeled raw data (network flow traffic), we have 
a set of labeled data with features depicted in Table 1. Our semi-
supervised approach uses complex network characteristics 
features of unlabeled data (clustering coefficients and vertex 
degrees) to create a supervised model. The feature extraction 
step in the supervised section of our approach uses a mapping 
scheme to extract hosts from the unlabeled dataset. 

 We propose a semi-supervised learning approach where we 
first derive different clusters mainly based on the clustering 
coefficient and vertex degree. To analyze the normalized data 
and detect crypto mining, we employ an enhanced semi-
supervised algorithm based on the Shared Nearest Neighbour 
(SNN) clustering algorithm [27]. The SNN clustering defines 
similarity or proximity between two nodes in terms of the 
number of directly connected neighbors they have in common. 
This suits its applicability in complex networks since the 
clustering coefficient and vertex degrees are dictated by 
neighbor relations. As such, we adopt the SNN algorithm which 
apart from considering direct associations between nodes also 
considers indirect connections. This provides for an ability to 
detect similarities between nodes that are not necessarily 
adjacent. Additionally, SNN has the ability to handle clusters of 
varying sizes, densities and shapes. As such, two nodes that are 
relatively close but belong to different clusters are handled 
effectively. 

 As shown from Figure 3, our semi-supervised approach 
consists of two phases: 1) an unsupervised phase that produces 
complex network characteristics features based on vertex 

degrees and clustering coefficients. 2) a supervised phase that 
learns and trains the model. This phase uses the KNN classifier 
and the labeled data. In short, our semi-supervised learning 
approach uses the unsupervised learning method to extract 
features from the unlabeled dataset and the supervised model 
classifies this data instances of crypto mining using complex 
network characteristics features. 

IV. Proposed Algorithms 

Algorithm 1 illustrates the enhanced SNN algorithm. The 

unsupervised phase utilizes the shared nearest neighbor 

clustering whilst the supervised phase utilizes the KNN. 

 

The semi-supervised learning approach is summarized in 

Algorithm 2. 

 

Algorithm 2: Semi-supervised learning for crypto mining detection 

Input:  𝑿𝒖−𝒅
𝒊 = {𝑥𝑙−𝑑

1 , 𝑥𝑙−𝑑
2 , 𝑥𝑙−𝑑

3 , … , 𝑥𝑙−𝑑
𝑖 },  unlabeled network flows 

                             where 𝑥𝑙−𝑑
𝑖  ∈  𝑅𝑛 , 𝑖 = 1,2,3, … , 𝑛 

  : 𝑿𝒍−𝒅
𝒊 = {𝑥𝑢−𝑑

1 , 𝑥𝑢−𝑑
2 , 𝑥𝑢−𝑑

3 , … , 𝑥𝑢−𝑑
𝑖 }, labeled data 

                              where 𝑥𝑢−𝑑
𝑖  ∈  𝑅𝑛 , 𝑖 = 1,2,3, … , 𝑛 

Output: 𝑇𝑃 && 𝐹𝑃 rates – cryptocurrency mining detection accuracy 

1. Read the unlabeled & labeled network flow dataset 

2. Normalize original data 𝑋𝑙−𝑑
𝑖 , 𝑋𝑢−𝑑

𝑖 , to get the data 𝑋𝑢−𝑑
𝑖̅̅ ̅̅ ̅̅ ̅, 𝑋𝑙−𝑑

𝑖̅̅ ̅̅ ̅̅  

3. Extract 𝑘 𝑎𝑛𝑑 𝑐, complex network features from 𝑋𝑢−𝑑
𝑖  

4. From 𝑋𝑙−𝑑
𝑖 , map corresponding 𝑘 𝑎𝑛𝑑 𝑐 in 𝑋𝑢−𝑑

𝑖 , generate features 

5. Cluster 𝑋𝑢−𝑑
𝑖 → 𝑆𝑁𝑁 ⇒  𝐶0, 𝐶1, 𝐶2, … , 𝑖 

6. Generate cluster states 𝐶0, 𝐶1 , 𝐶2, … , 𝑖 → 𝐹𝑆𝑀 (𝑆𝑛) ⇒ 𝐶𝑖
𝑆𝑛 

7. Train supervised KNN with 𝑋𝑙−𝑑
𝑖̅̅ ̅̅ ̅̅  and 𝑋𝑢−𝑑

𝑖̅̅ ̅̅ ̅̅ ̅ 

8. Classify 𝐶𝑖
𝑆𝑛 with the KNN 

9. Compute detection accuracy 𝑇𝑃 & 𝐹𝑃 rates based on SNN & KNN 

10. Return 𝑇𝑃 && 𝐹𝑃 rates for 𝐶𝑖
𝑆𝑛 clusters 

The unlabeled and labeled data {𝑋𝑢−𝑑
𝑖 , 𝑋𝑙−𝑑

𝑖 }  from network 

flows and the labeled data respectively are initialized and read 

in step 1. In step 2, we normalize the data by converting the input 

values to a common scale [𝑋𝑢−𝑑
𝑖̅̅ ̅̅ ̅̅ , 𝑋𝑙−𝑑

𝑖̅̅ ̅̅ ̅̅ ]. This enables us to make 

an effective comparison of the variations of the clustering 

coefficient and vertex degree. The complex network 

characteristics feature 𝑘 𝑎𝑛𝑑 𝑐 are extracted from the unlabeled 

data {𝑋𝑢−𝑑
𝑖 } in step 3. The labeled data is used in a mapping 

scheme in step 4 to locate a host and generate crypto mining 

features from the dataset. The SNN unsupervised clustering 

algorithm is used to create clusters in step 5 via the process 

{𝑋𝑢−𝑑
𝑖 } → 𝑆𝑁𝑁 ⇒  𝐶0, 𝐶1, 𝐶2, … , 𝑖. Step 6 assigns states to the 

clusters 𝐶0, 𝐶1, 𝐶2, … , 𝑖 generated in step 5. The KNN supervised 

algorithm is applied to the datasets {𝑋𝑙−𝑑
𝑖̅̅ ̅̅ ̅̅ } and {𝑋𝑢−𝑑

𝑖̅̅ ̅̅ ̅̅ } in step 7. 

The clustered data with states {𝐶𝑖
𝑆𝑛} is classified by the KNN 

algorithm in step 8. The True Positive and False Positive rates 

(𝑇𝑃 && 𝐹𝑃) are computed in step 9 and the corresponding 

𝑇𝑃 && 𝐹𝑃 rates for the clustered states are returned in step 10. 

 

 

Algorithm 1: Enhanced SNN for detecting crypto mining 

Input: G -undirected graph, 𝑘 number of shared nearest neighbors 
Output: 𝑳∗ - list of suspicious hosts participating in crypto mining. 

1 Initialize 𝑮∗ with |𝑉(𝐺)| vertices, no edges 
2 foreach 𝑖 =  1 𝑡𝑜 𝑉 (𝐺) do 

3      foreach 𝑗 =  𝑖 +  1 𝑡𝑜 𝑉 (𝐺) do 
4           𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =  0 
5           foreach 𝑚 =  1 𝑡𝑜 𝑉 (𝐺) do 

6          if vertex 𝑖 and vertex 𝑗 both have an edge with vertex 𝑚 then 
7                     𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =  𝑐𝑜𝑢𝑛𝑡𝑒𝑟 +  1 
8               end 
9           if 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 ≥ 𝑘 then 

10             Connect an edge between vertex 𝑖 and vertex 𝑗 in 𝑮∗ 
11               for 𝑺 ← 0  

12                   if △ 𝐾𝑖 > 1 at time 𝑡∗ for external communications 
13                         then (𝐻𝑖𝑛𝑡−𝑠𝑟𝑐) ∈  𝑺𝟏 

14     else if △ 𝐾𝒊
′′ > △ 𝐾𝑖  &&  △ 𝐶𝑖 > 1 && △ 𝐶𝑖 > [△ 𝐶𝑖−1,… 0]      

15                          then (𝐻𝑖𝑛𝑡−𝑠𝑟𝑐) ∈  𝑺𝟐 
16  else if △ 𝐾𝒊

′′ > 1 &&  𝑀𝑣 > (𝑋𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
∗ ) for time window △ 𝑡 

17                          then (𝐻𝑖𝑛𝑡−𝑠𝑟𝑐) ∈  𝑺𝟑 
18                 end if 
19        end 
20 end 
21 Return L* 
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V. Results Analysis and Discussions 

To apply the aforementioned framework and algorithms, we 
first start by analyzing the unlabeled traffic content with a 
protocol analyzer for crypto mining and non-crypto mining TCP 
and UDP traffic. The results are shown in Figure 4 below. 

 
Figure 4. TCP (blue) and UDP (red) traffic from the dataset 

We analyze traffic with crypto mining activities for the 
cryptocurrencies Ethereum, Monero, and Zcash for their 
corresponding mining pools. The diagram in Figure 5 shows 
traffic for the Ethereum mining pool captured via the Wireshark 
tool. 

 

Fig. 5. Traffic for the Ethereum mining pool 

It was noted that the mining protocols leverage TCP as the 
transport layer protocol. In comparison to official crypto p2p 
clients, the mining protocols do not necessarily use ”well-
known” port numbers. This is all dependent on the configuration 
of the administrator. As such, it is not uncommon to encounter 
port numbers for http=80, https/TLS=443, and SMTP=25 being 
used to bypass firewalls between the mining victim and the 
corresponding mining pool server. 

We use a public dataset [26] to evaluate our model. This 
dataset was specifically chosen because it is a publicly available 
repository and consists of the feature vectors and their 
classification (i.e., mining/non-mining) which are important 
because we are devising a semi-supervised approach and would 
not need to label the data. The feature vector specified in this 
dataset [26] which we later use for the supervised learning stage 
is outlined in Table II. 

 

 

 

TABLE II. DATASET FEATURE VECTOR 

SN Feature Description 

1 bpp Bytes per packet per flow per all flows 

2 ppm Packets per minute 

3 ppf Packets per flow per all flows 

4 Ackpush_all 
Number of flows with ACK+PUSH flags to all 

flows 

5 Req_all Request flows to all flows 

6 Syn_all Number of flows with SYN flag to all flows 

7 Rst_all Number of flows with RST flag to all flows 

8 Fin_all Number of flows with FIN flag to all flows 

9 class class - miner or not-miner 

We apply different clustering algorithms in Weka [28] and 
later compare them with the results of SNN clustering. One of 
the major shortfalls of the main tool we used (Weka) is that its 
capability of handling larger datasets is limited. As such, an 
OutOfMemory error occurs when dealing with large datasets. 
One of the mitigative approaches is to strategically partition the 
dataset into manageable units. The table below Table III shows 
the results of different clustering algorithms. 

TABLE III. COMPARISON RESULTS OF UNSUPERVISED LEARNING 

Clustering 

Model 

Clustered 

Instances 

Distribution (%) Computation 

Time (s) 

Simple-K-

Means 

2 [C0, C1] 55% : 45% 2.34 

Canopy 3 [C0, C1, C2] 55% : 4% : 41% 1.36 
MakeDensit

yBasedClust

erer 

2 [C0, C1] 55% : 45% 2.73 

Hierarchical

Clusterer 

2 [C0, C1] 0% : 100% - 

FilteredClus

terer 

2 [C0, C1] 55% : 45% 2.2 

FarthestFirs

t 

2 [C0, C1] 100% : 0% 0.56 

SNN 
5 [C0, C1, C2, 

C3, C4] 

22%:19%:18%:1

5%:26% 
1.74 

Application of the SNN clustering algorithm produces 5 
clusters of different properties. Table III shows 5 clusters with 
IDs C0, C1, C2, C3, and C4. As can be seen from Table III, the 
SNN algorithm performs better clustering with not only the 
highest numbers of clusters but even a better distribution. 

Cluster C0 has a high bpp (97.3%) and a high ppm (79.2%). 
It also has a high ppf (65.8%) compared to Ackpush_all (47.1%). 
This implies that hosts in this cluster have a higher vertex degree 
and clustering coefficient with regards to external 
communications. 

On the contrary, cluster C2 has bpp (98.5%) and ppm 
(83.6%) but the Ackpush_all (90.6%) is greater than ppf 
(75.3%). This implies that hosts in this cluster have a higher 
clustering coefficient and vertex degree with regards to internal 
communications. The number of flows with FIN flags to all 
flows for activities in this cluster is relatively higher than C0. 

A lower bpp (1.6%) and a high ppm (99.6%) corresponding 
to ppf (33.1%) instead of Ackpush_all (1.8%) for a smaller time 
window in cluster C4 entail that hosts in this cluster 
communicate more with external hosts. Furthermore, hosts in 
this cluster have a high Syn_all (97.8%) value implying a high 
number of synchronization connections requests to the mining 
pool. 
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TABLE IV. CLUSTERING RESULTS 

Attribute 
Cluster-ID 

C0 C1 C2 C3 C4 

bpp 0.973 0.763 0.985 0.861 0.016 

ppm 0.792 0.762 0.836 0.582 0.996 

ppf 0.658 0.371 0.753 0.864 0.331 

Ackpush_all 0.471 0.937 0.906 0.743 0.018 

Req_all 0.984 0.735 0.969 0.791 0.092 

Syn_all 0.548 0.524 0.81 0.577 0.978 

Rst_all 0.471 0.832 0.988 0.72 0.511 

Fin_all 0.35 0.526 0.871 0.936 0.302 

The clusters C1 and C3 have relatively average network 
statistics that depict the behaviour of benign hosts. The high 
Ackpush_all (93.7%) in C1 corresponds to a high Rst_all 
(83.2%) which is a correlation expected of normal network 
traffic. Equally in cluster C3, bpp (86.1%) corresponding to ppf 
(86.4%) which is supplemented by average values of other 
characteristics in the same range. The variations in the clustering 
coefficient and vertex degree in these network traffic statistics 
in the respective clusters depict the overall movement of the 
movement vector from the feature centroid. The clustering 
results of the attributes are shown in Table IV. 

After generating the clusters and associating them with 
crypto mining instances, we use the labeled dataset for 
classification and evaluate the effectiveness of our proposed 
approach. This is because the hosts in the labeled data are 
technically labeled as malicious for generating crypto mining 
traffic. However, we do not evaluate which stage of the crypto 
mining process the traffic belongs to. The detailed 
characteristics of the model for the hosts classified using the 
clusters, which are the results of the classification are shown in 
Table V. 

TABLE V. MODEL CHARACTERISTICS CRYPTO MINING DETECTION 

Class 
TP 

Rate 

FP 

Rate 
Precision Recall 

F 

Measure 
MCC ROC Area 

PRC 

Area 

Not 

Miner 
0.998 0.462 1 0.998 0.999 0.276 0.974 1 

Miner 0.538 0.002 0.143 0.538 0.226 0.276 0.974 0.504 

Avg. 0.997 0.461 0.999 0.997 0.998 0.276 0.974 1 

Correctly classified instances represent 99.72% while 
incorrectly classified instances represent 0.28%. The diagram in 
Figure 6 shows the confusion matrix of the correctly and 
wrongly classified instances.  

 Was actually   

Classified as Not Miner Miner   

Not Miner 355692 882 

     Green – Correct 

classifications 

 

      Red – Incorrect 

classifications 

Miner 26 147 

 

Figure 6. Confusion matrix for the model 

The model has good performance because the weighted 
average of the ROC Area is near 1 and way above the non-
discriminative characteristic (N.D) which represents equal TP 

and FP rates. The ROC curves for detection of not miner 
instances and miner instances are shown in Figure 6 and Figure 
7 respectively. Each instance in the ROC curve has a threshold 
value of a given class (Miner or Not Miner class). If the instance 
highly belongs any of the classes, its threshold will be close to 1 
will have orange or blue depending on the class. As such, all 
points above the ND line correspond to instances where the 
ration of correctly classified points belonging to the Miner class 
is greater than the proportion of incorrectly classified points 
belonging to the Not Miner class. In light of this, the blue colour 
indicate lower thresholds whilst the orange colour indicate 
higher thresholds. 

 

Figure 7. ROC curve for the “Not Miner” class 

The ROC Area entails the predictive characteristics of the 
model to distinguish between the true positives and the true 
negatives. As such, the model does not only predict a positive 
value as a positive but as well as a negative value as a negative. 
The TP Rate represents the instances that are correctly classified 
as a given class which essentially is the rate of true positives. 
The FP Rate represents which of the instances falsely classified 
as a given class which essentially is the rate of false positives. 

 

Figure 8. ROC curve for the “Miner” class 

The PRC, as opposed to the ROC Area, represents the behavioral 

characteristics of Precision Vs Recall. The Precision value 

denotes the ratio of instances that are true of a given class 

divided by the sum of instances classified as that given class. 

The Recall value denotes the ratio of instances classified as a 

class divided by the actual sum in that given class. As such, this 

is equivalent to the TP rate. The F-Measure is a combined 

measure that depicts the ratio of double the product of Precision 

and Recall divided by the sum thereof, i.e.  
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

∑(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙)
. 

The MCC is the measure of the quality of binary classifications 
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taking into account true and false positives and negatives. It is a 

balanced measure that has a range [-1, 1], with -1 denoting a 

completely wrong classifier and 1 indicating the opposite. The 

variations in the clustering coefficient and vertex degree in these 

network traffic statistics in the respective clusters depict the 

overall movement of the movement vector from the feature 

centroid.  

VI. Conclusions 

The results presented in this paper demonstrate that the 
integration of semi-supervised learning with complex network 
theory modeling is effective at detecting crypto mining activities 
in a network environment. Our model's efficiency was enhanced 
by first clustering unlabeled data based on dynamic complex 
network characteristics and classifying the resultant clusters 
using a proximity-based classification algorithm, hence semi-
supervised learning. The dynamic network characteristics 
exhibited in the network traffic generated by crypto mining 
activities serve as the modeling basis for detection. The presence 
of such crypto mining traffic in a corporate network is a high 
indicator of compromise. Our proposed detection methodology 
is advantageous in that it's independent of the nature of the 
victim device nor the underlying operating system since it's 
solely based on dynamic network statistics. Such an approach 
finds wide application in heterogeneous networks with varied 
devices such as IoT, SCADA/ICS systems, critical 
infrastructure, cloud computing, and so forth. 

References 
[1] N. Kshetri and J. Voas, “Do Crypto-Currencies Fuel Ransomware?,” IT 

Prof., 2017. 

[2] M. C. Kus Khalilov and A. Levi, “A survey on anonymity and privacy in 

bitcoin-like digital cash systems,” IEEE Commun. Surv. Tutorials, 2018. 

[3] M. Möser et al., “An Empirical Analysis of Traceability in the Monero 

Blockchain,” Proc. Priv. Enhancing Technol., 2018. 

[4] Branche Patrick O, “Ransomware: An Analysis of the Current and Future 

Threat Ransomware Presents,” Utica College, 2017. 

[5] N. Hampton and Z. A. Baig, “Ransomware: Emergence of the cyber-

extortion menace,” Proc. the13th Aust. Inf. Secur. Manag., 2015. 

[6] T. Bamert, C. Decker, R. Wattenhofer, and S. Welten, “BlueWallet: The 

secure Bitcoin wallet,” Lect. Notes Comput. Sci. (including Subser. Lect. 

Notes Artif. Intell. Lect. Notes Bioinformatics), 2014. 

[7] M. Salimitari, M. Chatterjee, M. Yuksel, and E. Pasiliao, “Profit 

Maximization for Bitcoin Pool Mining: A Prospect Theoretic Approach,” 

in Proceedings - 2017 IEEE 3rd International Conference on 

Collaboration and Internet Computing, CIC 2017, 2017. 

[8] M. A. Dave McMillen, “Mirai IoT Botnet: Mining for Bitcoins?,” Security 

Intelligence, 2017. [Online]. Available: 

https://securityintelligence.com/mirai-iot-botnet-mining-for-bitcoins/. 

[Accessed: 20-Oct-2019]. 

[9] “Detection of a Crypto-Mining Malware Attack at a Water Utility,” 

Radiflow. [Online] https://radiflow.com/case-studies/detection-of-a-

crypto-mining-malware-attack-at-a-water-utility/. [Accessed: 13-Oct-

2019]. 

[10]J. Vijayan, “Crypto-Mining Attacks Emerge as the New Big Threat to 

Enterprises,” Dark Read., vol. 1, no. ATTACKS/BREACHES, p. 1, 2018. 

[11]C. B. Raj Samani, “McAfee Labs Threats Report,” Santa Clara, 2018. 

[12]A. Zimba“Recent Advances in Cryptovirology:State-of-the-Art Crypto 

Mining and Crypto Ransomware Attacks,” KSII Trans. Internet Inf. Syst., 

2019. 

[13]M. A. Chenta Lee, Andrey Iesiev, Mark Usher, Dirk Harz, Martin 

Steigemann, Marc Noske, Abby Ross, Scott Moore, Limor Kessem, Tomer 

Agayev, Claire Zaboeva, Camille Singleton, Dave McMillen, Dave Bales, 

Joshua Chung, “IBM X-Force Threat Intelligence Index 2019,” United 

States of America, 2019. 

[14]J. Zorabedian, “Cryptojacking Rises 450 Percent as Cybercriminals Pivot 

From Ransomware to Stealthier Attacks,” Secur. Intell., vol. 1, no. 2, 2019. 

[15]J. Bloomberg, “Top Cyberthreat Of 2018: Illicit Cryptomining,” Forbes, 

vol. 1, no. 3, p. 1, 2018. 

[16]C. Haan, “African Countries Most At Risk of Ransomware and 

Cryptomining Attacks,” Microsoft, 2019. [Online]. Available: 

https://www.crowdfundinsider.com/2019/04/146716-african-countries-

most-at-risk-of-ransomware-and-cryptomining-attacks/. [Accessed: 23-

Sep-2019]. 

[17]X. F. Wang and G. Chen, “Complex networks: Small-world, scale-free and 

beyond,” IEEE Circuits and Systems Magazine. 2003. 

[18]A. Zimba, Z. Wang, and M. Mulenga, “Cryptojacking injection: A 

paradigm shift to cryptocurrency-based web-centric internet attacks,” J. 

Organ. Comput. Electron. Commer., vol. 29, no. 1, 2019. 

[19]P. R. K. S. B. Kumar1, C. U. Om, “Detecting and confronting fash attacks 

from IoT botnets,” J. Supercomput., vol. 1, no. 1, pp. 1–27, 2019. 

[20]A. M. Muhammad Saad, Aminollah Khormali, “End-to-end analysis of in-

browser cryptojacking,” ArXiv, pp. 1–15, 2018. 

[21]A. Zareh and H. R. Shahriari, “BotcoinTrap: Detection of Bitcoin Miner 

Botnet Using Host Based Approach,” in 2018 15th International ISC 

(Iranian Society of Cryptology) Conference on Information Security and 

Cryptology, ISCISC 2018, 2018. 

[22]S. Eskandari, A. Leoutsarakos, T. Mursch, and J. Clark, “A First Look at 

Browser-Based Cryptojacking,” in Proc - 3rd IEEE European Symposium 

on Security and Privacy Workshops, EURO S and PW 2018, 2018. 

[23]D. Carlin, P. Orkane, S. Sezer, and J. Burgess, “Detecting Cryptomining 

Using Dynamic Analysis,” in 2018 16th Annual Conference on Privacy, 

Security and Trust, PST 2018, 2018. 

[24]V. Veselý and M. Žádník, “How to detect cryptocurrency miners? By 

traffic forensics!,” Digit. Investig., 2019. 

[25]S. Delgado-Segura, C. Pérez-Solà, J. Herrera-Joancomartí, G. Navarro-

Arribas, and J. Borrell, “Cryptocurrency Networks: A New P2P Paradigm,” 

Mobile Information Systems. 2018. 

[26]M. Veselý V. & Žádník, “Dataset: How to Detect Cryptocurrency Miners? 

By Traffic Forensics!,” GitHub, 2018. [Online]. Available: 

https://github.com/nesfit/DI-

cryptominingdetection/blob/master/README.md. 

[27]H. B. Bhavsar and A. G. Jivani, “The Shared Nearest Neighbor Algorithm 

with Enclosures (SNNAE),” in 2009 WRI World Congress on Computer 

Science and Information Engineering, CSIE 2009, 2009. 

[28]“Weka 3: Machine Learning Software in Java.” 

https://www.cs.waikato.ac.nz/ml/weka/. 

[29]K. R. Marius Musch, Christian Wressnegger, Martin Johns, “Thieves in the 

Browser:Web-based Cryptojacking in the Wild,” in Proc. of the 14th Int. 

Conference on Availability, Reliability & Security. ACM, 2018.  

 

 

  

  

 

 
 


