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Abstract - Radar and Optical based satellite sensors were 

used in the study of the Mumbwa flood of December 2020. 

The Synthetic Aperture Radar (SAR) based Sentinel-1B 

was processed in Google Earth Engine (GEE) and utilized 

to generate an image mosaic from December 2020 to May 

2021 to delineate flood extent. A local water histogram 

threshold change detection approach by image ratio was 

utilized to determine the flood extent with an intensity 

value of 1.26 dB as it fitted the study area uniquely as 

opposed to the global value of 1.25 dB. After extracting the 

initial flood water extent, it was necessary to filter out 

regions which inundated during the flood period. This was 

carried out using the following datasets and parameters: 

The HydroSHEDS Digital Elevation Model (DEM) was 

used to filter out regions with a slope value of greater than 

7% and the Global Surface Water Layer was used to clip 

out regions with existing permanent surface water. Once 

the flooded areas were identified, the Optical based 

Sentinel-2 was used in the production of a Land Use Land 

Cover (LULC) Map for August 2020 in order to 

superimpose the flooded areas with existing land features 

over the study area. The map also under went pre and post 

processing in GEE using the Random Forest 

Classification Algorithm that achieved an Overall 

Accuracy and Kappa Coefficient of 0.957 and 0.91519 

respectively. Thereafter the flood analysis and damage 

assessment were carried out. The quantitative damages to 

Landcover were found to be: Wetland 6,338.97 Ha 

(33.27%), Shrubland 5,117.75 Ha (26.89%), Biochar Soil 

3,660.47 Ha (19.21%), Trees 3,466.37 Ha (18.19%), Bare 

soil 273.47 Ha (1.44%), Crop Fields 190.69 Ha (1%) and 

Built-Up 4.13 Ha (0.02%). Therefore the use of SAR by 

local histogram threshold approach with Optical datasets 

for LULC map production proved successful in the study 

of flood damage. 

Keywords - Random Forest Algorithm, Synthetic Aperture 

Radar, Histogram Threshold, Google Earth Engine. 

I. INTRODUCTION  

       Inundation and flooding along open water bodies occur 
as a result of catchment overflow caused by increased 
rainfall or other factors. In general, over certain river 
sections, flooding is a seasonal occurrence that varies in 
extent and severity [1]. 

Flood damage that has serious repercussions may be 
classified as a disaster event, depending on the human 
impact. Flood disasters are a major concern in developing 
countries that lack Early Warning Systems and Mitigation 
measures [2]. 

In the analysis and delineation of flood events as well as 
general land resource mapping, remote sensing and 
specifically satellite imagery are growing areas of particular 
interest due to their public availability and relative capability 
in capturing large areas in a single image [3]. Multispectral 
and optical imagery such as the Landsat Collection has been 
used for various mapping studies inclusive of flooding but 
said datasets are limited due to their incapability to penetrate 
cloud cover and operation which is limited to day-time [4]. 
Active sensors such as Synthetic Aperture Radar (SAR) act 
as a remedy that can penetrate climate-related interferences 
such as cloud cover and can operate at night [5]. For flood 
analysis, it is of key importance to understand the terrain of 
the study area. For this, a Digital Elevation Model (DEM) 
must be incorporated into the workflow as floods tend to run 
off areas with relatively high slope values [6].  

Processing of datasets for flood monitoring has been 
facilitated historically using various software vendors that 
offer continuous and unimpeded analysis tools. In recent 
years the development of cloud technologies has improved 
the outlook for remote sensing and data availability. Google 
Earth Engine (GEE) provides the said datasets as well as an 
Application Programming Interface (API) that allows for the 
seamless access and processing of Satellite Imagery Datasets 
[7]. 
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This research used Sentinel-1 SAR data with a histogram 
thresholding approach on a local context to assess flood 
damage and impact over the study area [8]. Upon pre-
processing the SAR data in unison with DEMs, a histogram 
fitting was carried out to delineate flood water from existing 
permanent open water in the study area for the 2020-21 rainy 
season [9]. A Change Detection (CD) approach using remote 
sensing is an accepted way to carry out a time series analysis 
using remote sensing datasets [10]. This study, therefore, 
used an image ratio CD approach with a local histogram 
threshold that is fitted specifically to the study area [11]. 
Thereafter a Land Use Land Cover (LULC) map using 
Sentinel-2 was generated using the Random Forest (RF) 
Classification Algorithm to serve as a study site for the flood 
impact assessments [12]. 

II. LITERATURE REVIEW 

A. Related Works 

Chini et al. [5] used a clustered split based histogram 

approach were they applied Change Detection (CD) in a 

SAR time series for flood delineation. The SAR backscatter 

was clustered into a local histogram threshold specifically 

tailored to the study area. However they did not factor in the 

effects of elevation on surface water runoff in their 

production of flood maps.   

Muhadi et al. [6] explored the use of LiDAR derived DEMs 

in the workflow of flood analysis and emphasizes the 

inclusion of elevation data in delineating flood inundation.  

In their research, Pandey et al. [25] utilizes SAR in GEE to 

monitor flood impact on agriculture and population in a 

flood prone basin. The backscattering coefficient, which 

is also known as sigma nought (σ0), is the normalized 

measure of the radar return from a distributed target and 

indicates the reflective intensity of a microwave object 

represented as the per unit area on the surface [15]. Their 

work used a global threshold of 1.25 sigma nought (σ0), in a 

CD by image differencing. They then went on to use The 

Gridded Population of the World (GPW) population density 

and Global Human Settlement Layer (GHSL) as well as The 

Copernicus Global land cover dataset that was acquired 

from the European Space Agency (ESA) for flood damage 

assessment [23]. This method though viable is not 

recommended as the use of a global LULC map for the 

designation and quantification of flood damage tends to 

import aggregated errors in the workflow from the 

classification on a global scale and this is a major drawback 

to this method. 

Conde and Muñoz [1] in their study use a SAR RGB 

(RED+BLUE+GREEN) composite to visualize the temporal 

modifications of their study area and apply change 

detection. Their study observed that in the SAR composite 

histogram, flooded areas fall within the limits having the 

lower bound being -24 dB and the upper bound -21 dB, (-24 

dB, -21 dB).  

To carryout LULC classification, Xu et al. [4] used the 

classifiers, Support Vector Machine (SVM) and Random 

Forest (RF) to classify a Landsat-8 dataset over the study 

area which had a heterogeneous landscape. The overall 

accuracies they observed were (overall accuracy: 85.5%) for 

SVM and (overall accuracy: 86.2%) for RF. It was found 

that RF was more suitable than SVM for classifying 

Landcover without the use of normalized difference indices. 

A major drawback with this method is the spatial resolution 

of Landsat which is 30 meters after pan sharpening that 

cannot effectively monitor objects that are less than the 

sensors resolution [23]. 

Phiri et al. [19] studies the performance of various 

classifiers, namely: (Maximum Likelihood Classifier 

(MLC), Support Vector Machine (SVM), Classification 

Tree (CT), k Nearest Neighbor (k-NN) and Random Forest 

(RF)) in the production of LULC with the use of a Sentinel-

2 dataset. There findings were that RF is a widely used 

classifier that obtained an Average Overall Accuracy > 90% 

when a Sentinel-2 dataset is used in their study [29]. 

The backscatter intensities of the combined water and 

feature clusters constitute a pair of Gamma densities for 

each component in the set of backscatter in which we 

observe (W+F), and the confluence of these two 

densities corresponds to a threshold that can minimize 

misclassification [37]. The Bayes Theorem is used to derive 

the local threshold 𝜎0.tN that is used to segregate water 

pixels (W) from other feature pixels (F), where the 

probabilities are functions of the backscattering coefficient 

𝜎0 such that 𝑃(𝑊(𝜎0)) and 𝑃(F(𝜎0)). As a result, equation 1 

below appears. 

               (1) 

              

The lower limit of equation 1 above is reached at the 

backscatter intensity 𝜎0.tN, where the posterior probabilities 

of water and feature cluster are identical [38]. We shall 

apply the local threshold 𝜎0.tN to the elements of (W + F) in 

order to distinguish the amount of water at each element in 

the set. Pixels in the subset are classed as water if the 𝜎0 

value is below the threshold 𝜎0.tN and as other feature if 

they prove otherwise. 

 

B. Research Questions and Hypotheses 

This research introduces the use of a local threshold by SAR 

CD determined by manual histogram fitting to delineate 

flood extent that is viable for the study area Mumbwa based 

on the local backscatter of the terrain determined by the 

DEM. Thereafter the generated flood map using the LULC 

map produced by the classification of Sentinel-2 optical data 

by the use of a suitable machine learning classification 

algorithm. To this effect it is hypothesized that there exists a 

SAR histogram threshold 𝜎0.tN of the study area of 

Mumbwa determined by Elevation and Terrain structure 

which is heterogeneous in this case that can be determined 

and used to extract water features from the larger SAR 

dataset. Therefore, it is attempted to identify a suitable local 

backscattering coefficient threshold value for the study area 

that will intern be used in GEE to automate the production 
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of a flood maps in perpetuity as the region is flood prone. 

The research questions therefore are;  

(1) In which range of values does the local 

backscattering coefficient threshold 𝜎0.tN for the 

study area of Mumbwa lie? And is the coefficient 

threshold value a Real or Complex number? 

(2) Which classification algorithm will best suit the 

study area which is heterogeneous in landscape? 

III. DATASETS 

A. Study Area 

The District of Mumbwa lies in the Central Province of 

The Republic Zambia with a land area of approximately 

2,143,019 Hectares. It has several hydrological features 

including streams and rivers that do tend to experience 

seasonal flooding, particularly in the rainy season between 

December and May [13]. Approximately 3,000 people were 

displaced from their homes as a result of flooding in 

Mumbwa with total rainfall recorded of about 370.92 mm 

during the 2020–21 rainy season between December 2020 

and May 2021. 

 

 

 

 

Fig. 1. Site Plan of Study Area 

The region of interest for the study is located South East 

of the District of Mumbwa and is bordered by the Kafue 

River as shown in Figure 1 and has an area of 709,357 

Hectares. 

TABLE I.  RAINFALL DATA FOR THE STUDY AREA  

Month 
Rainfall 

(mm) 

2020 

December 
125.88 

2021 January 85.4 

2021 February 127.33 

2021 March 25.51 

2021 April 6.42 

2021 May 0.38 

TOTAL 370.92 

 

During the rainy season under study, the months of 

December 2020 and February 2021 received the most 

rainfall. The study focused on the entirety of the rainy 

season to reduce and dilute the biases and errors in 

collection that may have occurred in the individual months 

[14]. 

 

 

 

 

 

 

Fig. 2. Digital Elevation Model (DEM) of the study area 



Shilengwe C.., et al/ Zambia (ICT) Journal, Volume 7 (Issue 1) © (2023) 

 

 

 

Zambia (ICT) Journal, Volume 7 (Issue 1)  © (2023)  10 

 

The study area as shown in Figure 2 lies in a depressed 

region in terms of elevation above mean sea level. The 

elevation values are between 942 to 1200 meters above sea 

level. The said region hosts several rivers and streams which 

are important for our study as flooding results in an overspill 

of the open water in these bodies. 

 

B. Datasets 

Sentinel-1 SAR Data 

The satellite constellation is a SAR project that provides 

continuous C-band images in four modes with various 

geographic resolutions both during the day and night. It uses 

two satellites launched separately, Sentinel-1A and Sentinel-

1B [15]. The image capture cycle takes 6 days when both 

spacecraft are used and 12 days when only one is used. It 

has a pre-planned monitoring scenario in place to ensure 

consistency and avoid conflict. To ensure a time series over 

land, the same SAR polarity technique is used [16]. For this 

study the Ground Range Detected (GRD) product was used. 

It has the polarizations VV and VH based on an Earth 

ellipsoid model, the product is constructed from identified, 

multi-looked, and ground range SAR data [17]. The mode 

for the GRD product is Interferometric Wide Swath (IW) 

that has a swath of and a spatial resolution of 5 x 20 m.  

 

Sentinel-2 MSI 

Two polar-orbiting satellites, Sentinel-2A and Sentinel-

2B, each equipped with an optical imaging sensor MSI 

((Multi-Spectral Instrument), make up the Sentinel-2 

mission. On June 23, 2015, Sentinel-2A was launched and 

on March 7, 2017, Sentinel-2B [18]. It has a temporal 

resolution of 5 days at the equator if both constellation 

satellites are used and 10 days if only one satellite is used, 

the band specifications are shown in Table 2 [19]. 

 

TABLE II.  SENTINEL-2 BAND SPECIFICATIONS 

Spatial 

Resolution 

(m) 

 Bands 

Central 

Wavelength 

(µm) 

10 

Band 2 - Blue 0.49 

Band 3 - Green 0.56 

Band 4 - Red 0.665 

Band 8 - NIR 0.842 

20 

Band 5 - Vegetation 

Red Edge 
0.705 

Band 6 - Vegetation 

Red Edge 
0.74 

Band 7 - Vegetation 

Red Edge 
0.783 

Band 8A - 

Vegetation Red 

Edge 

0.865 

Band 11 - SWIR 1.61 

Band 12 - SWIR 2.19 

60 
Band 1 - Coastal 

aerosol 
0.443 

Band 9 - Water 

vapour 
0.945 

Band 10 - SWIR - 

Cirrus 
1.375 

 

Digital Elevation Model (DEM) 

To determine which regions over the study area will be 

inundated and retain flood water, a Digital Elevation Model 

(DEM) was of key importance as floods generally inundate 

regions with low slope values [20]. The HydroSHED dataset 

was used for this. It is a georeferenced dataset that is derived 

from elevation data from the Shuttle Radar Topography 

Mission (SRTM) at a spatial resolution of 3 arc-seconds (30 

meters). It is comprised of watershed boundaries, stream 

networks, and other hydrological features [21].   

 

Global Surface Water Mapping 

Various indices exist for the mapping of open water 

features using optical datasets. These methods apply said 

indices over images to produce Surface Water datasets [22]. 

This study used such a dataset, particularly the Global 

Surface Water Dataset to differentiate between permanent 

water and flood water over the study area. The dataset uses 

millions of Landsat images over 32 years to delineate 

permanent water extent at a spatial resolution of 30 meters 

[23]. 

 

IV. METHODS AND PROCEDURES 

 

 

 

Fig. 3. Flow Chart of Methodology 
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A. Sentinel-1 Data Pre-Processing and Processing 

Sentinel-1B SAR data was acquired and processed 

through the Google Earth Engine (GEE) platform. There are 

various approaches to disaster analysis and mitigation such 

as Multi-Criteria Decision Analysis (MCDA). This study, 

however, took the Change detection approach to work with 

the SAR data [24]. The selected images for the “before 

flood” period were a mosaic selected by a date filter from 

the dates 01-08-2020 to 31-08-2020 and for the “after flood” 

period the dates were also a mosaic for the dates 01-12-2020 

to 31-05-2021. The mosaicking was applied to the images to 

produce two images, namely the before and after flood 

images, the pre-processing steps carried out were: 

radiometric calibration, removal of noise from thermal 

sources, speckle filtering and terrain correction [25]. All the 

pre and post-processing were done using GEE through the 

Java Script API [26]. The radiometric calibration converted 

intensity values to sigma naught (dB) which are the 

backscatter values needed for our analysis. The Polarization 

‘VH’ was used as it is recommended for use in flood 

analysis due to its ability to show a sharp contrast between 

land and water-related pixels. The orbit for Sentinel-1B 

passing over Zambia follows an Ascending pass direction. 

The pre-processing was carried out starting with the speckle 

filter and using a smoothing radius of 50 meters applied to 

the images to remove salt and pepper noises from the 

images as it reduces the quality of the satellite imagery and 

the backscatter interpretation thereafter may be erroneous. 

The ellipsoid used in SAR products as the reference surface 

causes geometric distortions in the image and therefore 

terrain correction was carried out [27]. After the pre-

processing was carried out, the change detection by image 

ratio was carried out. The before and after image mosaics 

were divided as per change detection ratio with a local 

histogram threshold 𝜎0.tN of 1.26 dB. The global threshold 

used for delineating water is 1.25 dB but for our study area, 

the value of 1.26 dB best produced a histogram fitted to 

water backscatter change. The resulting layer after the 

change detection by image ratio was then classified into two 

classes, where: the pixels correlating to water change were 

given a value of 1 whereas other feautures were given a 

value of 0 [28]. Thereafter, filtering of the initial flood 

extent was carried out. Primarily, the Global Surface Water 

Layer was used to clip out regions with permanent water 

that coincided with the flood water. Secondarily, the 

HydroSHEDS DEM was used to clip out regions with slope 

values greater than 7% as flood water tends to run off steep 

surfaces. Upon carrying out these processes, the output was 

the Flooded Areas layer as illustrated in Figure 6. 

B. Sentinel-2 Data Pre-Processing and Processing 

In order to adequately study and assess the flood impact, 

a LULC map of the study area was required and for this, 

Sentinel-2 was used [29]. The product used was Sentinel-2 

Level-2A which has already undergone radiometric 

calibration and atmospheric correction. Radiometric 

Calibration is the process where Digital Number (DN) 

values that are recorded by the sensor are converted to top 

of atmosphere reflectance values, whereas atmospheric 

correction picks this up and converts the top of the 

atmosphere reflectance values to the bottom of atmospheric 

reflectance [30]. Therefore for our study, cloud masking was 

carried out in the GEE platform using the metadata. The 

cloud pixel percentage that was chosen was 20% implying 

that only images of that value or less were loaded for cloud 

masking and further processing. A mosaic by filter date was 

carried out for our study area with the overlap of the region 

of interest [31]. The image scenes were mosaicked and 

filtered between the dates 01-08-2020 and 30-08-2020, 

thereafter the Landcover classification commenced. The 

image mosaic was then stacked to the specific bands that 

were needed for this process and these were 'B2', 'B3', 'B4', 

'B5', 'B6', 'B7', 'B8', 'B8A', 'B11' and  'B12' as Table II 

specifies. The loaded image in a stacked multiband mosaic 

was then trained using sample regions [32]. The Landcover 

classes that were considered were 8 in number, namely: 

open water, bare soil, trees, built-up, shrubland, crop fields, 

wetland and biochar. Points were used to pick training data 

in GEE over the study area of 1,345 regions of interest and 

these were the training samples used for the 8 classes [33]. 

These were noted in a ground truthing site visit and were 

observable classes in the study area. To pick the training 

data, colour composites were used in GEE and these were 

False Colour and True Colour Composites. Following this, 

the training samples were then passed to a Machine 

Learning Algorithm. Three (3) machine learning algorithms 

were tested for this and they were; Support Vector Machine, 

Decision Trees (CART) and Random Forest (RF). For the 

final results, RF was used with 1,000 trees and the LULC 

map was produced [34]. Accuracy assessment was carried 

out for the three (3) machine learning classification 

algorithms using GEE functions and the outputs for error 

evaluation were; producer accuracy, overall accuracy and 

Kappa (K) Coefficient [35]. Iterations were carried out to 

produce a Landcover map of desirable accuracy meeting a 

Kappa and Overall accuracy greater than 0.89. Upon the 

production of such a map, it was then used with the flooded 

areas to conduct an accuracy assessment [36].  

V. RESULTS AND DISCUSSION 

A. Land Use Land Cover Map 

The LULC map produced in GEE by the stated methods 

is depicted in Figure 4. Various algorithms were used in the 

production of a desirable map for flood analysis. The 

satisfactory result that met the required criteria of k > 0.89 

was the RF classification algorithm that had the subsequent 

results.  

Several iterations were carried out with all other 

parameters constant and only the number of Trees in the RF 

was altered and the best result had 1000 trees. Table 3 

shows how the various algorithms performed in terms of 

overall accuracy and kappa. 
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TABLE III.  OVERALL ACCURACIES AND KAPPA 

COEFFICIENTS OF CLASSIFICATION ALGORITHMS 

USED 

Algorithm 
Overall 

Accuracy 
Kappa  

RF (1000 Trees) 0.95700 0.91519 

RF (100 Trees) 0.95562 0.91246 

Decision Tree 0.94036 0.88287 

SVM (Voting) 0.83773 0.65465 

SVM (Margin) 0.81137 0.59973 

 

The LULC map after cleaning and post-processing 

produced an output shown in Figure 4. The eight Landcover 

classes in the study area are depicted visually and in Table 

4, the areas in hectares are represented. A large share of 

46.50% of the study area had biochar due to charcoal 

production in the study area. The classes of interest were 

Built-Up, Trees and Crop Fields which covered 0.27%, 

5.18% and 1.03% respectively. 

TABLE IV.  LAND USE LAND COVER (LULC) MAP 

STATISTICS 

Landcover 
Pixel 

Count 
Area (Ha) Percentage 

Open 

Water 
1,964,925 18,913.53 2.67 

Bare Soil 12,866,380 123,846.30 17.48 

Trees 3,815,892 36,730.14 5.18 

 Built-Up 195,709 1,883.81 0.27 

Shrubland 10,022,631 96,473.55 13.61 

Crop Fields 761,621 7,331.04 1.03 

Wetland 9,763,974 93,983.84 13.26 

Biochar 

(Soil) 
34,230,913 329,492.10 46.50 

Total 73,622,045 708,654.31 100 

 

Fig. 4. Land Use Land Cover (LULC) map of the study area 

for August 2020 using Sentinel-2A satellite imagery in GEE 

using RF Classification algorithm  

B. Flood Extent 

The backscatter analysis based on the histogram values 

for the SAR imagery showed the plot fitting as in Figure 5. 

The pre-flood image showed intensity ranging from -35 to -

5 dB whereas the after-flood showed a range of -33 to -3dB. 

Based on the skew of the graph it can be observed that the 

before-flood image mosaic had a limited number of pixels 

correlating to the backscatter of water. In the after-flood 

image, the skew at -21.01 dB correlates to backscatter 

resulting from water. The after-flood image shown in Figure 

5(c) shows a histogram plot for the image ratio with a 

threshold of 1.26 dB which was chosen for the case study 

due to suitable histogram fitting. From this it can be 

observed that a significant amount of water was captured by 

this local histogram threshold. 

 

 

 

 

Fig. 5. Plots of histograms of the (a)before flood period, 

(b)after flood and (c) ratio image difference 
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Fig. 6. Image Ratio SAR result in GEE (a) Mumbwa Image 

difference over True Colour Composite (b) Flooded areas. 

Figure 6 above shows the result of the image ratio in a 

SAR image with backscatter correlating to water change as 

well as the flooded areas in GEE. 

C.  Flood Damage 

In this study, flood damage was defined as the change of 

Landcover from an initial land class before the flood period 

to a water class in the after-flood period. The analysis 

therein resulted in the flood damage as shown in Table 5.  

 

TABLE V.  LANDCOVER DAMAGE TO CLASSES IN 

THE STUDY AREA 

Landcover Pixel Count Area (Ha) Percentage 

Bare Soil 28,411 273.47 1.44 

Trees 360,121 3,466.37 18.19 

 Built-Up 429 4.13 0.02 

Shrubland 531,683 5,117.75 26.86 

Crop Fields 19,811 190.69 1.00 

Wetland 658,555 6,338.97 33.27 

Biochar 

(Soil) 
380,286 3,660.47 19.21 

Total 1,979,296 19,051.85 100 

 

The inital trend shows flood water to primarily displace 

wetlands noted by the 33.27% share in the affected 

landcover as is expected due to these regions lying in close 

proximity to open water bodies. 

 

 

Fig. 7. The percentage of landcover damage for the study 

area of Mumbwa 

The damage to Bulit-Up areas was found to be 0.02% 

and Crop Fields 1% whereas the flood damage to trees was 

18.19%. The total flood extent was 19,051.85 Hectares 

which is  2.69 per cent of the land area under study in 

Mumbwa. 
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Fig. 8. Flood Map of Mumbwa showing affected Landcover 

classes as the Map Legend specifies. 

VI. CONCLUSION 

The Mumbwa Flood of December 2020 was investigated 

within the region of study located South-East of the District. 

The method of analysis was novel as it used a local 

histogram threshold 𝜎0.tN of Sentinel-1B SAR data of 1.26 

dB which is a real number and fits the terrain of the study 

area which is heterogeneous and allows for better 

backscatter analysis as opposed to the global threshold of 

1.25 dB and thus the first research question was answered. 

The change detection approach was utilized by image ratio 

for the before-flood image mosaic dated August 2020 and 

the after-flood mosaic of 01-12-2020 to 31-05-2021. In 

order to eliminate regions that have slopes over 7% which 

runoff during flood times, these were clipped out of the 

resulting flood extent. Furthermore, regions with permanent 

water were also removed from the flood inundation extent 

by the use of the Global Surface Water Layer, resulting in 

the flood extent map. To carry out damage assessment it was 

necessary to produce a Landcover map of accuracy k > 0.89 

and this was done using the Random Forest classification 

algorithm in GEE with 1000 trees that scored a k = 0.915. 

The Landcover map had the classes: Open water, Bare Soil, 

Trees, Built Up, Shrubland, Crop Fields, Wet Land and 

Biochar. Thereafter, the flood damage analysis was carried 

out by superimposing the flood extent over the Landcover 

map and clipping the two layers. This resulted in the 

Landcover damage which showed damage of 19,051.85 

Hectares. Of this, the damage to Built-Up and crop fields 

was 0.02% and 1%, respectively. Therefore the hypothesis 

of the existence of a Real histogram threshold backscatter 

coefficient specifically suited to the study area of Mumbwa 

was proven to be true. The workflow allows for automation 

of future flood analysis utilizing the applied histogram 

threshold when a study region of similar terrain is 

investigated. 
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