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Abstract—Agile user requirements are typically givens as 

user stories written using natural language and they come in 

different forms. The most complex form of stories to work with 

are epics. If epics are poorly understood, they can contribute to 

threats regarding the sprints or projects becoming behind 

schedule. It can be attributed to the epic's complexity. The 

research aimed to explore and attempt the use of Stanza from 

the Stanford NLP group in the decomposition of epics by 

creating a text generative model. We have also utilised the 

chunking technique to formulate the tasks from the generated 

user stories by identifying the linguistic structure through the 

aid of a POS tagger. The obtained results illustrate that the 

stanza can be utilised in the requirements engineering domain 

such as Sprint backlog grooming. The benefits of this research 

work are enormous considering that sprint backlog grooming 

takes considerable time and is always in iterative mode. Agile 

teams will also benefit from this work by efficiently using 

sprint timeboxes with minimal sprint planning effort. This will 

enable agile teams to spend more time delivering the right 

solutions with reduced sprint planning time and effort. 

Keywords—epic story refinement, natural language 

processing, user stories, Scrum 

I. INTRODUCTION 

Over the last decade, user stories have been ruled as the 
representation of user requirements in agile software 
development (ASD). They are described as the semi-
structured and concise representation of user requirements 
transcribed using natural language (NL) [1]. These stories are 
transcribed concisely to enable the fast progression of 
software development while maximising business value. 
Being concise ascribe to the flexibility and adoption of this 
notation in a dynamic environment such as ASD where just 
enough documentation is mandatory.   

The widely embraced user stories template by 
practitioners is given as follows: As < actor >, I want to < 
action > so that < business value or reason > is easy to 
comprehend and employ. Albeit easy to use, there are few 
complications. Mostly, large stories do not fit the Sprint, and 
this brings about negative repercussions on the projects; the 
sprint becomes partially complete during epics development 
and stimulates schedule overrun. These large stories are 
referred to as epics. To address this challenge, the 
preliminary rule of thumb is to decompose or refine these 
epics into small manageable stories. Decomposing is the 
reduction of an epic or large story into small manageable 
stories such that it can fit the sprint.  

It is essential to decompose epics since the accuracy of 
the sprint planning lies in the heart of the user story’s (US) 

complexity and inherent risk. Small user stories give the 
development team (DT) the confidence to select them over 
epics during sprint planning because there are no 
unanticipated emergent details. Additionally, small stories 
bring about adequate architecture, and their efforts are easy 
to estimate. Furthermore, the decomposed stories have a 
higher probability of being completed on time during their 
execution than the larger stories. However, there is still a 
challenge to automate the refinement of epics into user 
stories in an agile environment, especially in the context of 
Scrum methodology. 

Other researchers rely on the use of traditional 
approaches in Agile methodologies. Traditional approaches 
require manual human intervention and expertise to operate. 
The use of two traditional approaches horizontal and vertical 
slicing in Agile methodology is still acceptable. However, 
these techniques suffer from scalability problems when 
applied to extensive projects with large requirements. 

This paper draws inspiration from the prior success of 
applying NLP on a diverse array of automating the 
generation of Agile artefacts. This includes the 
transformation of user stories into use cases [2], the 
construction of test cases from software requirements 
specification (SRS) documentation expressed as natural 
language by [3], the automatic generation of user acceptance 
test cases from a document comprised of use case 
specification by  Wang et al, etc. Consequently, this paper 
attempts to harness the power of spacy-stanza to decompose 
stories. The Stanza Part of Speech (POS) tagger was used to 
analyse the linguistic structure of the generated user stories to 
form tasks. The process of extracting tasks from generated 
stories was accomplished using chunking with the aid of POS 
tagging.  

This paper is divided into four subsections. In section 2, 
the description of the background study is described to 
familiarize the reader with the technology and the terms 
used. Furthermore, section 3 describes the indulged 
methodology to attain the objective of the research, while 
four is the results and the discussion of the attained results. 
Lastly, we conclude the use of NLP in generating new user 
stories and do the recommendations. 

II. BACKGROUND 

A. Baseline: conceptual anatomy of Agile epic stories 

Massive user stories are sometimes referred to as epics 
[5][6]. Usually, this type of story consists of two or more 
action verbs based on their analyzed linguistic structures. For 
example, consider the following epic: 
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1) The Administrator can reset the user password, 
update the user's details, and deactivate user accounts that are 
not functional within 3 months.  

 

Fig. 1. Analysed linguistic structure of an epic requirement. 

 

These stories are massive to manage on a single sprint, so 
they are moved on to the next sprint to avoid overfitting. 
Overfitting is when the user story is too large and cannot be 
coupled with other user stories very well due to its capacity. 
It is crucial to note that user stories should not be too small or 
too big in terms of estimates. If the estimations of the user's 
story points are too small, say 0.3, there is a possibility of 
facing micromanagement. Moreover, a 60 points story stands 
a chance or high risk of ending up being a partially complete 
sprint [6]. 

There are two methods of splitting user stories into 
manageable tasks: horizontal and vertical slices. A more 
recent study suggested that the utilization of predictive 
analysis can be deployed in managing user stories [7]. 

B. Related work      

    This section discusses efforts made to address the 

decomposition of agile epics starting from traditional 

approaches (horizontal and vertical approaches) to 

contemporary state of art techniques such as NLP.  
 

1) Horizontal and vertical 

       According to [8] the widely practised decomposing 

technique within the boundaries of Agile is US mapping. It 

describes the decomposition of large USs from the user's 

perspective; It provides the highest level of requirements 

abstraction. In story mapping, large stories are coarse-

grained from epics to stories until their constituent's tasks. 

For instance, "create registration form" and "create a login 

page for the system" are good examples of high-level 

requirements. In addition, they further explored how 

different agile methodologies such (as XP, Scrum, and 

Scrum with Kanban) engage in the decomposition process. 

Their research results revealed that the utilization of 

traditional processes is still applied in the agile process 

during the splitting of stories. Moreover, the most proficient 

method among the discussed methods is Scrum with kanban 

followed by XP. The success of Scum with Kanban was due 

to the use of the vertical slicing technique. Albeit its 

popularity among Agilist, story mapping is achieved by 

human expertise. 

      Vertical slicing is the technique of decomposing an epic 

by touching aspects of every layer such as from the User 

Interface (UI) to the database. It encourages the delivery of 

product increments frequently to the end-users such that 

they provide feedback and incorporate updates within the 

subsequent iteration. In a study contacted by [9], four teams 

were deployed to study and determine how efficient is 

horizontal and vertical slicing in US decomposition. Vertical 

tends to have more positive traits than horizontal slicing in 

terms of risk and completion of the project. The utilization 

of the horizontal technique parades no functionality to the 

end-users but partially completed tasks which leads to 

reiteration and delivers ineffective sprints. 

      Other studies are worth noting. Lawrence proposed a 

strategy that decomposes epics through the reprioritization 

and isolation of requirements. To reach their goal, they 

decompose epics into small fragments and discarded stories 

with no value or importance. This technique was found to 

improve the isolation and decreases the inter-dependencies 

between user stories. 

2) Contemporary state of art  

The degree of automating requirements decomposition is 

scarce in agile software engineering in both the academic 

world and enterprise environment. However, the 

contemporary state of the art only provides the roadmap of 

possibilities of using NLP to address the challenges faced by 

manual techniques. The preliminary attempt which paved 

the way for the decomposition of requirements using NLP 

was recently shed to light by [10]. They studied linguistic 

structures that characterize USs together with their 

corresponding sprint backlog items. To achieve this, they 

used the Stanford Part-of-Speech (POS) tagger to determine 

the structure of the task labels. POS tagger is especially used 

in NLP to extract language structure such as verbs, 

adjectives, nouns, and others. Their results revealed the 

useful insights that can be employed to form the linguistic 

structure of tasks 

III. PROPOSED SOLUTION 

We propose the utilization of the spacy-stanza library to 
generate the user stories and tasks from a file comprised of 
Agile epics. Figure 2 shows the proposed method divided 
into two pipelines to enhance the tool’s performance. 
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A. First pipeline 

There are six processes executed in this stage; sentence 
segmentation, Part of Speech (POS), Named Entity Relation 
(NER), dependency graph generation, conference resolution 
and replacing the subject mentions from the text by 
identifying its pronouns [11].  This paper has adopted the use 
of new python NLP libraries called Stanza and Spacy-Stanza. 
The first four tasks were resolved by utilizing spacy-stanza 
pipelines and annotations which returned the POS tag of 
words, lemma and dependency graph of text provided as an 
output. Dependency graph returns a syntactic relationship 
between words in a sentence. The graph can consist of POS 
tags, root, etc. To visualize the dependencies, we imported 
the displacy library from spacy.  

The subsequent step resolved conference resolution 
between the sentences by utilizing Stanza CoreNLPClient 
interface annotators. This process simply replaces the 
pronouns with their correlated subject names or noun present 
in the Mentions. If similar subjects refer to the same 
pro/noun in the text given, the algorithm returns none and 
continues with the output of the current dependency graph 
where the graph's metadata acts as the input to the second 
pipeline. For demonstration purposes, we have illustrated the 
process of attaining the first output pipeline by using the text 
below. 

Sentence 1: 

1) “The bank Administrator views customer profile. 
But he cannot delete transactions history.”  

After the text went through all processes from the first 
pipeline, the output comes as modified text below:  

Transformed sentence: 

2) The bank Administrator views the customer profile. 
But the bank Administrator cannot delete transaction history.  

It is worth noting that the algorithm identified The bank 
administrator and he as the subjects in both sentences. 
However, the pronoun "he" refers to the same subject as "the 
bank administrator", therefore the algorithm suggested the 

replacement of pronouns with their respective subjects. 
Therefore, this triggers the dependency graph to be updated 
and return the modified text.  

B. Second pipeline (Phase 2)  

     The second pipeline receives metadata from the first 

pipeline's output and executes the most fundamental natural 

language tasks to decompose the epics into user stories. 

Having the input as a dependency graph from the first 

pipeline permits us to perform text analysis and extract 

essential information to generate user story information. For 

instance, to extract the user/actor of the user story from the 

dependency graph, we have implemented a function that 

facilitates the extraction of the subject representatives of 

nouns and returns them as a list. This was accomplished by 

extracting a word with POS tags NOUN, PROPN and 

dependency token either nsubj or nsubjpass, compound. The 

code illustrates how to extract the user/actor for the user 

story generation. 
 

 

The first line from the code performs sentence segmentation 

while the second and third lines perform tokenization. The 

fourth line searches all the words that are subjects with 

active voice (nsubj) by using the dependency attribute 

deprel. The items from this list are retrieved later to form 

part of the user story's information, user /actor. For instance, 

the template that this paper followed is given as: 

Template: “As “+ <user/actor> + “I want to be able to “+ 

<phrase>.  

C. Generating user stories 

To generate the user story, the algorithm starts by 
counting the number of verbs in each sentence as indicated in 
the activity diagram in figure 4. The processing is given in 
two categories, single verbs and multiple verbs. For each 
category, there are different steps to follow until the user 
stories and tasks are generated.  

  

Fig. 2. Outline the design process of decomposing epics 
Adapted from [11] 

Fig. 3. Code snippet for extracting an actor 
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Fig. 4. Activity diagram decomposes user story and task 

 

1) Algorithm for a single verb 

The process starts by counting the number of verbs 
present in each sentence. Most algorithm steps followed in 
the activity diagram in figure 4.1 are self-explanatory. After 
that, we find the subject from the sentence using the 
dependency graph by finding the keyword key nsubj. The 
nsubj denotes that the sentence is in active voice, and it is a 
nominal subject, while nsubjpass denotes that the sentence it 
is in passive mode. However, this paper focuses on text 
written in active mode. We, therefore, discard all text written 
in passive mode. For demonstration purposes, we will 
continue with the first sentence from the first pipeline.  

Sentence 1: The bank Administrator views the customer's 
profile 

Following the algorithm proposed by [11], iterate through 
the entire dependency graph and count the number of verbs 
in each sentence by finding their POS tag with the keyword 
VERB. It is worth noting that this research only implemented 
the user stories that are inactive mode. The activity diagram 
in figure 4 illustrates the algorithm used to attain user stories 
and tasks. From the sentence, the verb found was views. Find 
the position of the identified verb and start the partial 
sentence generation from the verb's index until the end 
sentence. Save this information in a string variable called a 
partial phrase. Figure 5 illustrates the code snippet that this 
paper has developed to identify the verbs' index and generate 
a partial sentence. 

 

Fig. 5. Code snipped for partial sentence generation 

 

The first line of the code determines tokens found in a 
sentence. The doc_sent[i] in this case indicates the specific 
sentence we are focusing on with a single verb. Line 3 
identifies the verb from the sentence by using POS tag 
VERB. After finding the position of the verb in a sentence, 
get the index of the verb by using the keyword token.i. The 
next task was to determine the end of the sentence. As 
indicated in line 6, the end of the sentence was found by 
using the keyword end with the sentence. After finding the 
position of the verb and the end of the sentence, construct a 
partial sentence by starting the generation from the verb's 
index to the end of the sentence. Store this information in a 
string called a partial phrase. Line 6 of the code performed 
exactly partial text generation and gives the output below.  

output:  

Partial phrase = views customer’s profile. 

The subsequent step followed was to eliminate the 
punctuation at the end of the sentence. This paper has 
harnessed the power of regular expression (regex) for text 
processing to eliminate the punctuation from the partial 
phrase. After that, replace the verb from the partial phrase 
with its verb lemma. The code below illustrates how to 
replace a verb with its lemma. 

The ultimate step left is now to collect the pieces of 
information that are attributed towards the formation of the 
user story (subject and partial phrase]. Use this information 
to form a user story using the template in section 1. 

From the template, we get the following user story when 
using sentence 1.  

Template = [subject/actor] I want to be able to [partial 
phrase] 

Subject: The bank Administrator  

Partial phrase: view customer’s profile. 

It is also imperative for the user story formed to possess 
an object. This was extracted from the partial phrase's 
dependency graph by identifying words with the dependency 
keyword obj. If the object exists, use the user story's 
template to fill in the corresponding missing information to 
form the user story. The results of the user story for the 
above text were found as: 

User story: As the bank Administrator I want to be able to 
view customers' profiles.  

2) Algorithm for multiple verbs  

      In case the sentence is comprised of multiple verbs that 

are inactive voices, use a dependency graph to determine the 

subject or compound from the sentence given. Furthermore, 

use the dependency graph's metadata to extract the presence 

of root nodes that are verbs from the entire sentence. Save 

the index of each verb found from the input text. Then, 

initialise the splitting process to form partial phrases. The 

splitting process was summarised by the following steps 

below: 

1. Get the root verbs and their index positions from 

the entire sentence. Save this information in a list 

2. Count three words before reaching the next root 

verb in the sentence and append this text to the root 

verb.  

3. Form partial sentences with the output of step 2.  

4. Verify the presence of an object (obj) from the 

partial sentences by searching through the 
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dependency graph. We have illustrated this process 

by using the code snippet below.  
 

 
Fig. 6. Determine the presence of object in generated phrase 

 

5. Refine all unnecessary conjunctions words that 

complicate the user story to avoid ambiguity. 

6. From the partial sentence formed, replace the verb 

with its lemma.  

7. With the information from step 6, retrieve the 

subject and fill in the user story's template with its 

corresponding text. Remember template = As 

[subject], I want to be able to [partial phrase].  

8. Use chunking to extract the tasks from obtained 

user stories generated.  

9.  Repeat all the steps until the entire text is 

processed. 
 

D. Extracting tasks from the generated user stories 

After the generation of user stories is complete, we 
extracted useful insights from the decomposed user stories to 
form tasks associated with those decomposed stories. To 
decompose user stories into tasks, this paper builds on the 
guidelines provided by an empirical study on how to 
formulate tasks from a given user story by applying NLP 
techniques [16]. We have also distilled grammatical patterns 
that generate the task from the given user story by using the 
chunking technique through the aid of Spacy-stanza 
annotations and pipelines. To be more specific, verb phrase 
detection was the most effective chunking technique we 
employed. A verb phrase is a syntactic phrase that consists of 
at least one action verb. This verb can be trailed by other 
chunks, such as object phrases, noun phrases etc. 

The tasks were extracted by analysing partial phrases 
from the user story information. This paper determined the 
rules that govern the determination of tasks from their 
respective user story linguistic structure linguistic task 
stricture.  

1) The initial word should be verb a with dependency 
tag ‘root’ 

Therefore, the pattern of finding the tasks from the user 
story was given as: 

Pattern = ‘r(<VERB>? <OBJ>*<NN>+)’ 

For demonstration purposes, consider the formulated user 
story in the section Algorithm for the single verb. 

The output of the task was found as: 

Task: view customer’s profile.  

IV. EXPERIMENTAL EVALUATION 

       To evaluate the proposed algorithm, we provided the 

file which comprised of epic stories with different case 

studies. The first case study is a prominent cash withdrawal 

system called ATM (Automated Teller Machine). Secondly, 

we formulate another epic by using an eCommerce website. 

We adapted epic requirements specifications from the Agile 

Samurai textbook.  

A. Case study: ATM 

      Input text: The bank customer can withdraw money from 

the ATM without card. The Bank customer can also deposit 

money on the ATM, change PIN on the ATM and transfer 

funds from the current account to the savings account on the 

ATM. The customer should be able to receive SMS 

notifications when money is withdrawn from the account.  

 

1) Generated stories and tasks 

 

TABLE I DECOMPOSED EPICS RESULTS FROM ATM TEXT 

 

Index  

range 

  

Generated stories  Tasks 

4:11 

As the bank customer I want to be 

able to withdraw money from ATM 

without card 

Withdraw 
money from 

ATM 

without card 

16:22 
As the bank customer I want to be 
able to deposit money on the ATM 

Deposit 

money on 

the ATM 

22:27 
As the bank customer I want to be 

able to change PIN on the ATM and 

Change PIN 
on the ATM 

and 

27:35 

As the bank customer I want to be 
able to transfer funds from the current 

account to savings account on the 

ATM 

Transfer 
funds from 

the current 

account to 
savings 

account on 

the ATM 

35:42 
As the bank customer I want to be 
able to use the ATM if money is 

to use the 

ATM if 

money is 

49: -1 
As the bank customer I want to be 

able to receive SMS notification 

Receive 

SMS 

notification 

B. Case study: Ecommerce 

Input: The customers should be able to view products sold 

online. If the customer decides to purchase the products 

online, add products to the bucket where s/he can continue 

with the purchasing process as the guest or create account 

for shipping purposes. They must be able to pay with visa 

cards or cash on delivery (COD). The system should 

validate expired cards to avoid scammers. 
 

1) Generated stories and tasks 

 

TABLE II DECOMPOSED EPICS RESULTS FROM ECOMMERCE 

 

Index  

range 

  

Generated stories  Tasks 

6:8 

As products I want to be able to view 

products. 

View 

products 

14:16 

As products I want to be able to 

purchase the products online 
 

Purchase 

products 
online 

26: 
As products I want to be able to add 

products to the bucket where s he can 

Add 

products to 
the bucket 

where s he 

can 

41:50 

As products I want to be able to create 

account for shipping purposes they 

must be able to 

create 

account for 

shipping 
purposes 

they must be 

able to 
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Index  

range 

  

Generated stories  Tasks 

65:69 
As products I want to be able to 
validate expired cards to  

validate 

expired 

cards to  

 
 

V.   RESULTS 

      This paper harnessed the power of the classical machine 

learning called confusion matrix metric in classification 

problems with known answers. To measure the 

performance, four metrics Accuracy, Precision, Recall, and 

F1 measure determined. Table III shows the overall 

performance of the tool with an aggregated average on the 

tested use cases. 
 

TABLE III AVARAGE PERFORMENCE OF THE ALGORITHM 

 

Metrics Percentage % 

Accuracy 89.25 

Precision 100 

Recall 77.25 

F1 Measure 87% 

 

VI. CONCLUSION  

Based on the results obtained, this paper concludes that 
NLP is an adequate technique to automate Agile software 
artefact generation. We have obtained an average accuracy of 
89.25%, an F1 measure of 87%. Through further experiments 
and analysis of sentence structure that formulates Agile 
epics, this paper infers that the linguistic structure of epics 
explicitly possesses two or more action verbs. However, this 
does not imply stories implicitly expressed. For example, " 
Administrator should be able to manage user account". The 
word manage can be extended into four different words such 
as delete, add, update, and create. 
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