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Abstract-The adoption of cloud computing systems is 

rapidly increasing, necessitating robust monitoring to 

ensure optimal performance and a comprehensive 

understanding of the internal state of these systems. 

Effective monitoring is crucial for early anomaly 

detection and preventing potential failures. Unlike grid 

computing, cluster computing, and high-performance 

computing. Cloud computing introduces unique features 

such as scalability and elasticity, which require 

specialised monitoring approaches. Existing literature 

indicates that traditional monitoring tools from previous 

computing paradigms have been adapted for cloud 

systems. However, these tools often fall short due to the 

distinct characteristics of cloud environments. This 

paper identifies a significant gap in research on 

monitoring techniques specifically designed for virtual 

resources and highlights the importance of observability 

in cloud systems. Observability, which facilitates root 

cause analysis, is essential for quickly resolving faults by 

examining the internal state of the cloud system. This 

paper explores the primary characteristics of cloud 

monitoring tools, providing examples of currently used 

tools and their features. Additionally, it surveys virtual 

machine monitoring techniques and emphasises the 

critical role of observability in ensuring the rapid 

resolution of issues through logs, metrics, traces, and 

dependencies. 

Keywords: Cloud Computing, Virtual Resources, Virtual 

Machine, Monitoring, observability 

I.INTRODUCTION 

Cloud computing is increasingly adopted by 

institutions as an innovative method for hosting 
applications and delivering computing services to 

consumers. By utilising virtualisation technology, 

cloud computing creates a seemingly infinite pool of 

virtual resources for users. These resources are offered 

in a multi-tenant manner, facilitated by virtualisation 

technology, allowing for the virtualisation of memory, 

storage, processors, and networks. Cloud consumers 

can dynamically add or remove computing resources 

based on their processing needs with minimal 

interaction with the service provider. 

In cloud computing, virtual resources are categorised 

under Infrastructure as a Service (IaaS), which forms 

the foundational layer upon which other cloud service 

models are built. The ability to provision and de-

provision resources such as storage, processors, and 

virtual machines on an ad hoc basis renders cloud 

computing both dynamic and complex. Applications 

hosted on virtual machines in the cloud necessitate 

continuous monitoring of virtual resources to ensure 

optimal performance and availability. This proactive 

monitoring is essential to detect and resolve issues 

before they escalate into system failures.  

A virtual machine (VM) is a software-based emulation 

of a physical machine, capable of emulating various 

computer hardware components such as processors, 

storage, and network devices. Virtualisation 
technology, which underpins cloud computing, 

enables the efficient utilisation of hardware resources 

by creating a layer of abstraction over physical 

machines. This abstraction allows for the sharing of 

computing resources, enabling individual VM’s to run 

different operating systems and configurations while 

behaving as independent computers on the same 

physical hardware. 

The management of VMs is facilitated by the 

hypervisor, a software layer that coordinates VMs by 

providing an interface between them and the physical 

hardware. Virtual resource monitoring is essential for 

tracking the state of cloud infrastructure and the 

applications running on it. Monitoring benchmarks or 

thresholds are typically defined in the service level 
agreement (SLA) between the cloud service provider 

and the consumer. 

While monitoring can reveal issues with VMs or cloud 

resources, observability is crucial for identifying the 
exact cause of these problems. Observability 

telemetry, which includes logs, metrics, traces, and 

dependencies, provides deep insights into the state of 

the cloud system. This telemetry is used for root cause 

analysis after monitoring has detected an issue. 

Understanding the motivation for cloud monitoring 

and the various techniques used to monitor cloud 

resources is vital for managing the cloud infrastructure 

and detecting anomalies before they impact normal 

cloud operations. It is equally important to grasp the 

concept of observability and to employ both 

monitoring techniques and observability to efficiently 

manage cloud platforms. By leveraging monitoring 

and observability, we can reduce the failure rates of 
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cloud systems and gain a comprehensive 

understanding of their internal states, enabling 

effective root-cause analysis. 

This paper undertakes a systematic literature review 

methodology to analyse the current landscape of 

virtual machine (VM) monitoring techniques and 

observability practices within cloud computing 

environments. To structure this analysis, we employ 

taxonomic classification to categorise cloud 

monitoring tools into commercial and open-source 

offerings. Furthermore, a comparative analysis is 

conducted to highlight the distinctions between 

traditional monitoring approaches and cloud-native 

solutions, with a particular focus on their 

capabilities. 

This study is guided by the overarching research 

question: 

How can virtual machine monitoring and 

observability techniques be optimised to enhance the 

reliability and performance of cloud systems? 

To address this primary question comprehensively, 

the following subsidiary research questions (RQ) are 

explored: 

RQ1: What are the limitations of traditional 

monitoring tools when applied to cloud 

environments? 

RQ2: Which techniques are identified as most 

effective for virtual machine monitoring in the 

cloud? 

RQ3: How does observability complement traditional 

monitoring methodologies to improve root cause 

analysis in complex cloud systems? 

RQ4: What are the essential characteristics of an 

effective and robust cloud monitoring system? 

RQ5: How do commercial and open-source 

monitoring tools compare in their ability to address 

the unique challenges of cloud environments? 

The structure of this paper is as follows: Section 2.0 

elucidates cloud resource monitoring and the 

underlying motivations for its implementation. Section 

3.0 addresses the monitoring of virtual machines. 

Section 4.0 investigates the fundamental 

characteristics of an effective cloud monitoring 
system. Section 5.0 provides a review of existing cloud 

monitoring systems and their attributes. Section 6.0 

delves into techniques for virtual machine monitoring. 

Section 7.0 explores the concept of observability. 

Section 8.0 introduces a conceptual framework. 

Finally, Section 9.0 offers concluding remarks. 

II.CLOUD RESOURCE MONITORING 

The inherent complexity of cloud computing arises 

from the multitude of resources and virtual instances 

encompassing processing, memory, storage, and 

networking. These resources contribute to the 

complexity as they are distributed across the cloud 

infrastructure, with cloud consumers dynamically 

adding and removing resources based on their ad-hoc 

processing needs. This process occurs with minimal 
interaction from service providers, often resulting in a 

lack of control over the number of virtual resources 

being managed. Consequently, continuous monitoring 

of these resources is imperative to ensure they operate 

within predefined parameters or thresholds. According 

to [6], the increasing complexity of cloud 

infrastructure necessitates enhanced resource 

monitoring to maintain operational efficiency and 

manage this complexity. Furthermore, [6] highlights 

that cloud monitoring is integral to cloud computing, 

as it enables service providers to predict and track the 

evolution of parameters related to Quality of Service 
(QoS), availability, and overall system performance. 

This capability allows service providers to plan and 

adapt cloud resources based on monitoring outcomes, 

ensuring that service level requirements are 

consistently met. 

The primary objective of cloud monitoring is to ensure 

that cloud service providers deliver reliable and 

optimally performing services and applications. This 

practice reduces the failure rate of cloud systems, 

thereby enhancing the reliability of services provided 

to cloud consumers [60]. Additionally, cloud 
monitoring facilitates superior consumer experiences 

by enabling the prompt identification of 

vulnerabilities, allowing for the resolution of 

bottlenecks before they lead to system failures. It also 

safeguards sensitive and confidential data by 

monitoring for security breaches, ensuring compliance 

with privacy and security regulations [60]. As the 

adoption of cloud computing continues to rise, 

monitoring the health and status of cloud resources 

becomes a critical aspect of managing cloud 

computing platforms for both service providers and 

consumers [67]. 
2.1 The Motivation for Cloud Resource Monitoring 

Monitoring encompasses the collection, aggregation, 

processing, and display of quantitative data pertaining 

to a system, including metrics such as error counts and 

processing times [70]. Several factors drive both cloud 

service providers and consumers to engage in cloud 

resource monitoring. The motivating factors for cloud 

monitoring are discussed below. 

2.1.1 Capacity Planning 

Monitoring enables cloud service providers to ensure 

the availability of sufficient resources to meet the 
service level demands of their consumers. By 

maintaining an optimal amount of computing 

resources, providers can deliver cloud systems and 

services that adhere to the required quality of service 

standards [5][66][69]. Furthermore, monitoring 

facilitates capacity planning by tracking the utilisation 

of cloud resources. Through this process, both cloud 

service providers and consumers can identify 
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resources that need to be scaled up to meet the 

processing demands of the cloud environment. 

2.1.2 Service and Resource Provisioning 

By monitoring the utilisation of cloud services and 

resources, cloud service providers can adjust these 
services and resources to meet the demands of their 

consumers. Cloud resources can be provisioned either 

dynamically or statically. In dynamic provisioning, the 

workload demands of the consumer dictate the amount 

of resources required. Conversely, in static 

provisioning, the cloud resources remain fixed once 

they are defined. Cloud monitoring facilitates optimal 

service and resource provisioning for cloud service 

providers [5][66]. 

2.1.3 Configuration Management 

System configurations consist of defined parameters 

that dictate how a system operates. These parameters 
are periodically adjusted to meet system demands or to 

modify services. Efficient configuration management 

is achievable only through the monitoring of cloud 

resources. By tracking deviations in the adjusted 

parameters, cloud service providers can ensure that 

changes made to the cloud environment are effective 

and enhance the operations of the cloud system 

[5][66][69]. 

2.1.4 Fault Management 

The inherent complexity of cloud environments 

necessitates continuous monitoring to identify the root 
causes of faults. In the absence of a monitoring system, 

pinpointing the specific elements responsible for cloud 

system failures would be exceedingly challenging. 

Cloud consumers require monitoring to diagnose the 

causes of failures within their cloud systems, which 

can only be accurately determined through the 

implementation of a robust monitoring system 

[5][66][69]. 

2.1.5 Security Management 

The security of cloud environments is a critical factor 

influencing the adoption of cloud computing systems 

[5]. Cloud consumers require assurance that their data 
and systems are secure when hosted in the cloud. 

Consequently, security monitoring and management 

have become integral components of cloud service 

offerings. Cloud service providers must be capable of 

monitoring cloud systems to detect and respond to 

security breaches and attacks effectively. 

2.1.6 Service Level Agreement Management 

A Service Level Agreement (SLA) is a contractual 

document established between the cloud consumer and 

the cloud service provider. It delineates the agreed-

upon service offerings, encompassing quality of 
service (QoS), pricing, and penalties. Monitoring SLA 

violations necessitates a robust cloud monitoring 

system, which is crucial for ensuring consumer 

satisfaction [66]. 

An effective cloud monitoring system should possess 

capabilities such as measuring QoS parameters, 

storing and analysing data, assessing resource 

consumption, and evaluating SLA compliance [5][66]. 

2.1.7 Accounting and Billing  

A fundamental characteristic of cloud computing is its 

metered usage model, wherein services are billed 

based on consumption, akin to a utility. It is imperative 

for both the cloud service provider and the cloud 

consumer to reach a consensus on the billing 
mechanisms. The accuracy and transparency of 

accounting and billing information can only be 

ensured through comprehensive monitoring. 

III. VIRTUAL MACHINE MONITORING 

Virtual machines (VMs) host applications that operate 

within the cloud environment. Consequently, it is 

imperative to monitor the availability, performance, 

and overall health of these virtual machines to ensure 

that cloud consumers can access cloud applications 

and that cloud service providers meet their service 

level requirements. 

Virtual machine monitoring is defined as the process 
of overseeing virtualised instances or resources across 

a network [6]. This monitoring is typically conducted 

using software tools that analyse logs continuously 

generated by the virtual machine instances. The 

availability, health, and performance metrics of these 

instances are displayed on dashboards, which present 

the data in graphical formats. Cloud service providers 

utilise these dashboards to detect and respond to 

anomalies in memory, processing, storage, and 

network parameters. 

Given that cloud consumers frequently add and 
remove virtual resources on an ad-hoc basis, the cloud 

environment is inherently dynamic and complex, 

making it susceptible to failures. Therefore, 

monitoring plays a crucial role in ensuring that the 

cloud infrastructure remains reliable, highly available, 

and maintains optimal Quality of Service (QoS). 

IV. ESSENTIAL CHARACTERISTICS OF A 

CLOUD MONITORING SYSTEM 

Cloud monitoring systems continuously collect and 

verify information regarding the state of cloud 

resources. This process generates data, information, 

and knowledge that enable cloud service providers to 
measure, assess, and effectively manage both 

hardware and software infrastructures [59]. Given the 

complexity of cloud computing systems, monitoring 

systems must possess characteristics that are adaptive 

to the dynamic nature of cloud environments. Effective 

monitoring is essential to detect faults before they 

adversely impact the cloud system. 

Cloud systems must exhibit essential characteristics to 

meet the expectations of both cloud consumers and 

service providers. According to [55], many cloud 

monitoring tools have been adapted from those 
originally developed for grid computing, cluster 

computing, and High-Performance Computing (HPC) 

systems. However, cloud computing systems differ 

significantly from these architectures due to their 

inherent scalability and elasticity [55][56][59]. As [67] 

posits, elasticity is a defining characteristic that 

distinguishes cloud computing systems from previous 

paradigms such as grid computing and HPC. This 

unique attribute necessitates that cloud monitoring 
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systems align with the specific characteristics of cloud 

computing. Consequently, conventional monitoring 

tools are inadequate for cloud environments, as they 

were not designed with the unique demands of cloud 

systems in mind [67]. 
The following section outlines the essential 

characteristics that cloud monitoring systems should 

possess. 

4.1 Scalability 

A monitoring system is considered scalable if it can 

effectively manage numerous probes. It must maintain 

stability and efficiently handle a substantial number of 

probes used to collect monitoring data, as required by 

cloud consumers or service providers. Cloud 

computing systems utilise a combination of physical 

and virtual resources, generating significant amounts 

of data. The monitoring system should be capable of 
processing and analysing these vast data volumes from 

various cloud resources and sources (both physical and 

virtual) without adversely affecting the normal 

operations of the cloud systems [5][24][55][63]. 

According to [61] and [64], a cloud monitoring system 

collects data from diverse cloud resources, filters, 

aggregates, analyses, and ultimately reports this data, 

which is then utilised for decision-making. This entire 

process necessitates computing resources. 

Consequently, the cloud system must handle this 

processing without disrupting its normal functioning. 
Furthermore, [62] and [63] observe that monitoring 

distributed systems involves data collection, 

interpretation, and the display of information related to 

the interactions of concurrently executing processes 

within the distributed system. This observation 

underscores the necessity for cloud monitoring 

systems to be scalable and not impede the regular 

operations of the cloud system. 

4.2 Elasticity 

Cloud systems are inherently dynamic, characterised 

by the continuous addition and removal of resources. 

Cloud consumers can augment computing resources as 
needed with minimal interaction from service 

providers, presenting a significant challenge to the 

monitoring system. The monitoring system must adapt 

to these dynamic changes, accommodating resources 

added on an ad-hoc and random basis, and accurately 

report monitoring information for billing and service 

level agreement (SLA) compliance [5][24][55][63]. 

The capacity of the cloud monitoring system to adapt 

to the addition and removal of cloud computing 

resources is referred to as dynamism [5][65]. 

Elasticity, a defining feature of cloud computing, 
distinguishes it from other computing paradigms such 

as grid computing. Previous paradigms were static and 

lacked the ability to expand and contract based on 

resource addition or removal [67]. Cloud computing 

resources, however, expand and contract according to 

user requirements. These fluctuating resources must be 

monitored to ensure accurate billing and resource 

utilisation reporting. The cloud monitoring system 

should enable cloud service providers and consumers 

to modify the metrics being monitored without 

disrupting the overall operation of the cloud system. 

Resources should be added and removed seamlessly, 

without impeding the system’s overall functionality 

[65]. 
4.3 Adaptability 

This characteristic necessitates that a cloud monitoring 

system must adapt to varying network and 

computational loads without impeding the operation or 

functions of other activities. According to [5] and [24], 

cloud systems exhibit significant dynamism in their 

operations, making adaptability a critical attribute for 

a cloud monitoring system. A cloud monitoring tool 

should maintain its normal operations even when the 

monitored environment changes by the addition or 

removal of resources. Adaptability implies that a 

monitoring system should assist in fault mitigation and 
provide accurate monitoring information, even when 

resources are added or removed from the cloud 

environment on an ad-hoc basis, without disrupting the 

normal operations of the cloud system [66]. 

4.4 Timeliness 

Cloud monitoring systems must provide timely 

notifications to enable administrators, cloud 

consumers, and cloud service providers to act before 

the cloud system reaches a state of failure [5][24][63]. 

A monitoring system that fails to deliver prompt 

notifications is ineffective. Real-time monitoring of 
cloud resources is essential, as it provides critical 

information about the state or health of the cloud 

infrastructure. These real-time insights help prevent 

system failures by detecting anomalies early and 

allowing for prompt intervention. Timeliness is thus a 

crucial characteristic of cloud monitoring systems, as 

it contributes to reduced failure rates. Lower failure 

rates in cloud computing enhance the confidence of 

cloud consumers in cloud services and applications. 

According to [67], the integration of artificial 

intelligence and machine learning can enable cloud 

monitoring systems to automatically detect faults 
within the cloud environment and apply remediation 

techniques to prevent system failures. This approach, 

known as autonomic computing, involves designing 

computer systems that can reconfigure their 

parameters when a component exceeds prescribed 

thresholds. Autonomic systems are self-healing and 

self-configuring, requiring minimal human 

intervention. 

4.5 Autonomicity 

An autonomic monitoring system possesses the 

capability to self-manage its distributed resources by 
automatically responding to unpredictable changes 

[5][24][55][63]. These systems can reconfigure 

themselves without human intervention, effectively 

concealing complex details from both the cloud 

consumer and the cloud service provider [55]. 

Autonomic systems are designed to self-heal and 

recover from critical errors autonomously. This 

characteristic is essential for cloud monitoring systems 

due to the dynamic and ever-changing nature of cloud 
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environments. Virtual machines are frequently created 

and destroyed based on the needs of the cloud 

consumer, resulting in a constantly evolving cloud 

environment. Autonomicity facilitates the 

maintenance of failure-free cloud systems by enabling 
the monitoring system to adapt to varying monitoring 

parameters and promptly communicate this 

information. This adaptability significantly reduces the 

likelihood of faults that could lead to errors and, 

ultimately, the failure of the cloud system. 

 

 

 

 

4.6 Resilience, Reliability and Availability 

A monitoring system is considered resilient when it 

can continue its intended function despite the failure of 
other components. Resilient monitoring systems are 

essential for cloud environments, as they must provide 

critical monitoring information related to billing, SLA 

compliance, and resource management. Therefore, a 

monitoring system must withstand component failures 

and continue performing its intended monitoring 

functions as expected [5][24]. 

Reliability in monitoring systems is defined as the 

ability to perform the required functions under 

specified conditions for a specified period [68]. Cloud 

monitoring systems must be reliable and function as 
required. Additionally, cloud systems are deemed 

available when they provide services according to their 

design specifications whenever users or administrators 

access the monitoring system. The monitoring system 

should consistently be available and responsive to user 

requests [68]. 

4.7 Accuracy 

A monitoring system is deemed accurate when the 

measurements it provides closely align with the actual 

metrics being assessed. This accuracy is a crucial 

characteristic of a cloud monitoring system, as precise 

monitoring information is essential for the effective 
oversight of cloud systems [5][24][63]. Cloud systems 

track the usage of resources to bill consumers based on 

their resource consumption. Accurate billing is 

contingent upon the cloud system’s ability to precisely 

monitor resource usage and provide reliable usage data 

for both billing and resource management purposes. 

V.CLOUD MONITORING PLATFORMS 

Section 4 examined the primary characteristics of 

cloud monitoring systems. This section focuses on the 

principal platforms utilised for monitoring cloud 

computing systems. Cloud monitoring platforms are 
categorised into two categories: commercial and open 

source. The section below provides a summary of 

these monitoring platforms, their respective 

categories, and the key characteristics exhibited by 

each tool in relation to the characteristics discussed in 

section 4. 

5.1 CloudWatch 

Amazon provides a comprehensive monitoring 

platform known as Amazon CloudWatch. This service 

is capable of monitoring various AWS resources, 

including Amazon EC2 instances. CloudWatch 

collects and aggregates monitoring data, which is then 

stored in a database for a retention period of two 

weeks. Users can utilise this stored data to analyse and 
visualise performance metrics of their cloud instances, 

thereby gaining insights into their operational 

efficiency and resource utilisation [5][66]. 

CloudWatch is categorised as a commercial 

monitoring tool and its main characteristics are 

timeliness, extensibility and elasticity. 

 

5.2 AzureWatch 

AzureWatch is a monitoring tool designed for users of 

the Azure cloud platform. It is capable of collecting 

key performance metrics related to various Azure 

resources, including databases and applications. This 
tool enables users to monitor and analyse the 

performance and operational efficiency of their cloud-

based services, thereby facilitating informed decision-

making and resource optimisation [5][66]. 

AzureWatch is categorised as a commercial cloud 

monitoring tool and its main characteristics are 

scalability, adaptability, autonomicity and 

extensibility. 

5.3 CloudKick 

This monitoring tool is provided by Rackspace, it is 

designed to monitor key performance metrics such as 
CPU utilisation and traffic volumes. This tool offers 

real-time monitoring capabilities and can promptly 

alert users to anomalies via email or SMS. By 

providing timely and actionable insights, Cloudkick 

enhances the operational efficiency and reliability of 

cloud-based services [5][66]. 

Cloudkick is categorised as a commercial cloud 

monitoring tool and its main characteristics are 

scalability and adaptability. 

5.4 CloudStatus 

This monitoring tool supports Amazon Web Services 

(AWS) and Google App Engine. Built on the Hyperic-
HQ platform, it provides comprehensive monitoring 

information related to user application performance. 

This tool is instrumental in conducting root cause 

analysis when performance issues arise within the 

cloud environment, thereby enhancing the reliability 

and efficiency of cloud-based applications [5][66]. 

This tool is categorised as a commercial cloud 

monitoring tool and its main characteristic is 

timeliness. 

5.5 Nimsoft 

This tool offers a unified dashboard for monitoring 
both public and private cloud infrastructures. It is 

capable of overseeing cloud services such as Google 

Apps, Rackspace, Amazon Web Services, and 

Salesforce. Additionally, it can be utilised to monitor 

Service Level Agreement (SLA) violations, thereby 

ensuring compliance and optimising service 

performance [5][66]. This tool falls under the 

commercial category and its main characteristics are 

scalability and comprehensiveness.[5][66]. 
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5.6 Montis 

Montis employs agents to gather data on monitored 

resources, with a primary focus on Amazon Web 

Services (AWS). This tool is designed to send alerts to 

users in the event of any issues with the monitored 
resources, thereby facilitating prompt response and 

resolution [5]. This tool falls under the commercial 

category and its main characteristic is 

comprehensiveness. 

5.7 LogicMonitor 

LogicMonitor is predominantly utilised for monitoring 

virtual infrastructure. It possesses the capability to 

detect newly provisioned resources and commence 

reporting monitoring data on these resources 

immediately. Additionally, LogicMonitor can identify 

and respond to the deletion of resources in real time. 

The tool provides comprehensive monitoring 
information through intuitive dashboards, thereby 

enhancing visibility and management of virtual 

environments [5]. This tool is categorised as a 

commercial cloud monitoring tool and its main 

characteristics are scalability, elasticity and 

comprehensiveness. 

5.8 Nagios 

Nagios is a versatile tool employed for monitoring 

cloud infrastructure. It is capable of overseeing virtual 

instances and storage services. The Nagios platform is 

highly extensible, allowing for the monitoring of 
various aspects of both physical and virtual 

infrastructure. This flexibility makes it an invaluable 

resource for comprehensive infrastructure 

management. Nagios is characterised as an opensource 

cloud monitoring tool and its main characteristics are 

adaptability and scalability [5][66]. 

5.9 OpenNebula 

OpenNebula is a comprehensive toolkit designed for 

managing distributed and heterogeneous cloud 

infrastructure. It is capable of monitoring both cloud 

and physical infrastructure, providing valuable 

monitoring information to cloud providers. 
OpenNebula collects monitoring data through probes 

installed on the nodes being monitored, ensuring 

accurate and timely insights into the performance and 

status of the infrastructure [5][66]. This tool is 

characterised as opensource and its main 

characteristics are adaptability and scalability. 

5.10 CloudStack 

CloudStack is a robust platform utilised for the 

deployment and management of extensive networks of 

virtual machines. To monitor both virtual and physical 

devices within CloudStack, a Zenoss extension known 
as ZenPack is employed. This extension is responsible 

for managing alerts and events related to monitored 

parameters originating from zones, pods, and hosts, 

thereby ensuring comprehensive oversight and 

operational efficiency. This tool falls under the 

opensource category and its main characteristic is 

timeliness. 

5.11 Nimbus 

Nimbus is a comprehensive platform consisting of an 

integrated suite of tools designed for monitoring, 

instantiation, configuration, and repair of cloud 

infrastructure. Predominantly utilised by the scientific 

community, Nimbus supports a combination of 
OpenStack, Amazon Web Services (AWS), and other 

cloud infrastructures. This versatility makes it an ideal 

platform for cloud deployment and monitoring within 

scientific research environments. This monitoring tool 

is classified as opensource, and its main characteristic 

is autonomicity. 

 

 

5.12 DARGOS 

DARGOS is a sophisticated platform designed for 

monitoring both virtual and physical resources. It 

employs a distributed cloud monitoring architecture 
that utilises a hybrid push and pull approach to 

disseminate monitoring information. This platform is 

characterised by its low overhead and has been 

engineered to be both flexible and extensible. 

DARGOS leverages agents to collect monitoring data, 

such as resource usage, from the nodes under 

observation. This tool falls under the opensource 

category and its main characteristics are extensibility, 

adaptability and intrusiveness. 

5.13 Hyperic-HQ 

Hyperic-HQ is a comprehensive platform that supports 
the management and monitoring of cloud 

infrastructures. It is capable of overseeing both virtual 

and physical resources, providing detailed reporting 

and analysis of the monitored assets. This platform 

facilitates the collection of availability, performance, 

utilisation, and throughput metrics, thereby enhancing 

the operational efficiency and reliability of cloud-

based environments. This cloud monitoring tool falls 

under the opensource category and its main 

characteristics are scalability and comprehensiveness. 

5.14 Sensu 

Sensu employs message queuing to monitor cloud 
systems, utilising RabbitMQ as its foundational 

technology, as discussed in section 6.1. It leverages the 

Advanced Message Queuing Protocol (AMQP) to 

ensure the secure processing and communication of 

messages that contain monitoring data. This approach 

enhances the reliability and security of the monitoring 

process, facilitating robust cloud infrastructure 

management. Sensu is an opensource cloud 

monitoring tool and its main characteristics are 

extensibility and elasticity. 

VI. VIRTUAL MACHINE MONITORING 

TECHNIQUES 

A variety of techniques are employed to monitor 

virtual machines, driven by the need to ensure effective 

capacity planning for cloud infrastructure and reduce 

the failure rate by having key insights into the 

performance of the cloud environment. These 

techniques facilitate the detection of failures, 

identification of underperforming resources, and 

recognition of redundant cloud resources. 
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Additionally, they support the evaluation of cloud 

systems and the detection of policy violations. This 

section of the paper looks at various techniques that are 

used to monitor virtual machines in cloud computing. 

6.1 Message Queuing 
A message queue is a service-to-service 

communication mechanism utilised in distributed 

systems. It operates asynchronously and is commonly 

employed in serverless and microservice architectures. 

Message queuing involves storing messages in a queue 

until they are processed and subsequently deleted. This 

approach facilitates communication between 

distributed applications by maintaining a sequence of 

work objects awaiting processing. Message queues 

provide a buffer for messages when the destination 

service is busy or offline, ensuring that messages are 

retained in the queue until the receiver connects and 
consumes the designated messages. 

ZeroMQ, as discussed in [7], is a system that employs 

message queuing to monitor virtual machines. It 

collects key metrics from virtual machines via an API 

(Application Programming Interface) and transmits 

this information to a central monitoring server. The 

server then compares the performance of the virtual 

machine against a benchmark, and if resources are 

found to be over-utilised, an alert is sent to the relevant 

system administrator or cloud service provider. 

ZeroMQ defines queues to which applications connect 
to transmit messages, which are subsequently read by 

the receiving application. 

A message can contain information about a task, 

process, or event. The queue retains the message until 

the receiving application connects and retrieves it. 

Message queuing ensures that no messages are lost, 

even if the sender or receiver experiences a fault. 

Messages remain in the queue until any issues with the 

sender or receiver are resolved. 

A message queue, also known as a message broker, 

acts as an intermediary or middleware for various 

services. It can reduce the load and delivery times of 
web application servers by delegating resource-

intensive tasks, thereby enhancing overall system 

efficiency. 

The basic architecture of a message queue is shown 

below. 

 
Figure 1: Message Queue Architecture [21] 

In Figure 1, the producer produces a message that is 
published to the queue. The consumer connects to the 

queue and consumes its assigned message. The 

message queue keeps the message when the consumer 

is offline so that the message can be consumed when 

the consumer is back online. 

Although message queueing has many advantages, it 

has some drawbacks. One of the major drawbacks of 

message queueing is the message queue itself, the 

queue can become unreachable, and this poses a 

problem as messages will not be received and 

transmitted, this requires that fault-tolerant 

mechanisms be used to ensure that the message queue 

is highly available. Availability and performance 
issues arise when applications fail to communicate 

with the message queue [28]. The other drawback is 

that message queueing adds a layer of complexity, this 

complexity leads to increased processing and in some 

cases slows down the operation of the system. In [23] 

message queueing was used for the MonArch system, 

the MonArch system used a message queueing 

application called RabbitMQ. RabbitMQ is an open-

source message broker and its basic function is to 

facilitate communication between various applications 

by allowing the applications to communicate with each 

other [28]. RabbitMQ acts as a middleman and 
facilitates the exchange of messages between 

applications. RabbitMQ is an intermediary for 

messaging, it provides a safe space for messages to 

reside until the intended consumer connects to the 

message queue and consumes the message. The 

difference between RabbitMQ and ZeroMQ is that 

RabbitMQ relies on a message queue to transmit 

messages while ZeroMQ does not need a message 

queue. It is a brokerless message queue. Brokerless 

message queues connect directly to the peers and 

transmit messages directly. There is no broker 
involved in this transaction [28]. In [30] GlassFish 

Message queue is used by Oracle to monitor and tune 

the performance of Oracle systems. GlassFish is a 

message queueing application and can be configured 

to monitor various metrics in a distributed system. 

GlassFish just like any other message queueing system 

pushes messages to a broker or message queue and the 

messages are accessed or processed by a consumer 

[30]. 

6.1.1 Advantages of Message Queues 

Using message queues to monitor virtual machines has 

several advantages. These advantages are discussed in 
the sections below. 

6.1.1.1 Asynchronous Messaging 

Messages are added to the queue and only consumed 

when the intended recipient (Consumer) is available. 

This is useful when the consumer is busy with other 

tasks. The message can wait in the queue and the 

consumer can execute the message once it is done with 

other tasks. The queue will continue accepting 

messages and keep the messages until the consumers 

are ready to consume their messages [29][30][31]. 

6.1.1.2 Concurrency 
Multiple producers can send messages to the queue at 

the same time. These messages are kept in the queue 

as they are sent and the corresponding consumers can 

consume the messages as and when they are sent to the 

queue. The order in which the messages are sent does 

not matter [29][30][31]. 

6.1.1.3 Monitoring 

Message queuing systems have a monitoring feature. 

This allows monitoring of the queue. This can help 
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with monitoring the throughput of the queue, 

identifying problems with the queue, and gaining vital 

insights and statistics about the queue [29]. 

6.1.1.4 Decoupling of Tasks 

A large task can be broken down or decoupled and 
pushed into the queue and it appears as a sequence of 

tasks [29]. 

6.1.1.5 Persistence 

Messages that are pushed to the queue are kept in the 

queue until they are processed. Messages are only 

deleted from the queue once they are consumed or 

processed. Queues ensure that transactions go through, 

and messages are only discarded when they have been 

consumed [29][30][31]. 

6.1.1.6 Resilience 

Message queues are resilient in that a faulty 

component or consumer will not affect the overall 
functioning of the queue. The other producers will 

continue submitting messages to the queue. According 

to [31] this prevents the faulty consumer or component 

from affecting the entire functioning of the queue. 

6.1.1.7 Inter-Application Connectivity 

Different applications can access message queues and 

consume messages that are in the queue. The language 

or architecture used to develop the application does not 

matter [29][31]. The ability of the message queues to 

support various programming languages and protocols 

is referred to as versatility [31]. 
6.1.1.8 Improved Security 

Some message queuing systems can encrypt, identify, 

and authenticate messages as they are submitted to the 

queue. Messages can also be encrypted in transit, at 

rest or end-to-end. This ensures that messages are 

protected and this increases the overall security of the 

queue [31]. 

6.1.1.9 Guarantee that transactions occur once 

Message queues ensure that a transaction occurs once. 

This is achieved by keeping the message in the queue 

until the consumer consumes the message in the queue. 

The message is only deleted from the queue after the 
consumer has accessed the message. This ensures that 

the transaction only occurs once [29][31]. 

6.2 Data Stream Management 

In [8] a data stream management system (DSMS) was 

used to develop a system capable of monitoring 

multitenant cloud systems. DSMS is software that acts 

like a Data Base Management System (DBMS). The 

difference is that the DSMS handles continuous 

streams of data and the queries are long-running, 

standing, and persistent [22][33]. Stream data is data 

that is emitted in real-time, in high volumes, in an 
ordered sequence, and a continuous stream 

[33][34][35]. Stream data is incremental and is good 

for low-latency processing [32]. Stream processing 

systems ingest a data sequence and incrementally 

update metrics, reports, and summary statistics. 

Stream processing systems comprise of a stream 

producer and a stream consumer [32]. Stream 

producers are software applications or devices that 

collect stream data and pass on the collected data to the 

stream consumer. Stream consumers are software 

components that process and analyse stream data. 

Stream producers could be IoT devices or probes that 

are placed in an environment to continuously monitor 

that environment based on defined metrics. Similarly, 
probes can be placed in a virtual machine to monitor 

the performance of the virtual machine. The probes 

collect and transmit the metrics from the virtual 

machine to a stream consumer which then processes 

that data and provides real-time metrics that aid the 

cloud service provider in detecting if the cloud system 

is about to fail or take action when some of the key 

metrics are above the prescribed threshold. Data 

stream processing systems are mostly applicable in 

scenarios where new and dynamic data is generated 

continuously [32]. DSMS are therefore a perfect fit for 

virtual machine monitoring due to the dynamic nature 
of virtual machine monitoring data. 

6.2.1 Challenges of Working with Data Streams 

Stream data architecture significantly differs from 

traditional Database Management Systems (DBMS) in 

that it processes continuous streams of data, 

introducing a higher level of complexity. According to 

[36], real-time monitoring systems necessitate 

distributed stream processing, which contrasts sharply 

with the conventional processing of static data stored 

in databases. Stream processing systems handle data in 

real-time, presenting unique challenges. The following 
are some of the challenges encountered when working 

with data streams: 

6.2.1.1 Availability 

Streaming applications require consistent, low latency, 

and high availability. Data stream consumers 

constantly take in new streams of data and they are 

constantly processing the data in real-time. This means 

that delays from the producers could cause the system 

to be in a state of error.  Therefore, it is imperative for 

data stream applications to maintain high availability 

to ensure uninterrupted data consumption [32][37]. 

The requirement for availability is a challenge as it 
brings about a level of complexity [32]. 

6.2.1.2 Scalability 

Raw data streams can experience unexpected surges, 

particularly during periods of increased system usage. 

According to [32], such surges may occur during 

events like social media posts related to major sporting 

events. During these surges, the data stream system 

must prioritise the sequencing of incoming data in real-

time. [33] posits that data stream management systems 

(DSMS) order data implicitly based on arrival time and 

explicitly by timestamps. This process demands a high 
level of processing power and complexity. 

Consequently, a DSMS must be capable of adapting to 

increased processing demands and maintaining normal 

functionality during periods of heightened data stream 

activity [37]. 

6.2.1.3 Durability 

Stream data is inherently time-sensitive, and any 

disruption to the Data Stream Management System 

(DSMS) can result in data loss. Once stream 
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processing data is lost, it cannot be recovered or 

backtracked [33]. Therefore, stream processing 

systems must be fault-tolerant to prevent the loss of 

stream data [32]. The loss of access to the data stream 

compromises the integrity of the processed data, as 
certain data streams may be missed [37]. 

6.2.2 Architecture of a Data Stream Management 

System 

DSMS requires a unique architecture due to the nature 

of the data that they process. The data in a DSMS is a 

real-time, continuous, ordered sequence of items that 

are classified or ordered by time of arrival or by a time 

stamp. If the data is ordered by arrival time it is 

considered as being implicit. If the data is ordered by 

time-stamp it is considered explicit. The figure below 

shows a conceptual architectural diagram of a DSMS. 

 
Figure 2: Architecture of a DSMS [32][34] 

Data streams that are processed by the DSMS come 

from multiple sources. Some of the sources include 

IoT devices, Probes, and event logs from virtual or 
physical machines that can be of interest to the cloud 

consumer or cloud service provider. The input monitor 

is used to regulate the amount of streaming data that is 

consumed by the DSMS. The input monitor regulates 

the data streams by dropping some packets. Stream 

data is stored in temporal working storage, the 

summary storage, and the static storage. Long-running 

queries are requested from the query repository. The 

queries are usually placed in groups for shared 

processing. The query processor communicates with 

the input monitor and may re-optimise the queries in 

response to the dynamic input rates. The output buffer 
is used to temporarily store the results of the stream 

processing for the user to view. 

 [8] acknowledges the nature and complexity of the 

cloud and emphasises the importance of monitoring 

the cloud infrastructure to ensure that it is reliable and 

highly available. [8] further theorises that cloud 

monitoring can be used for fault detection and 

proposes that data stream management systems be 

used to achieve this.[9] affirms that cloud monitoring 

is critical for cloud computing and various techniques 

and methods must be researched so that cloud service 
providers can meet the Service Level Agreements with 

their cloud consumers and data stream management 

systems can be used to monitor events that happen in 

real-time through the use of continuous and persistent 

queries to monitor the metrics collected from virtual 

machines[33]. DSMS can be used for fault detection 

and fault prevention in the systems that are being 

monitored [34]. The ability of the DSMS to forecast 

the data streams makes it suitable for monitoring 

virtual machines as failures that might be experienced 

by the virtual machine are detected before they occur 

[34]. 
6.3 Plugins and Application Programming Interfaces 

(APIs) 

Plug-ins and Application Programming Interfaces 

(APIs) are essential for integrating with most 

monitoring tools. Cloud service providers define their 

metrics and use APIs and plug-ins to extract 

monitoring information. One such system, 

NEB2REST, was utilized by [10]. NEB2REST is a 

custom module that acts as a broker for low-level 

monitoring infrastructure, enabling Nagios to 

communicate monitoring information with a RESTful 

web service via a plug-in. 
Nagios, an open-source monitoring tool, monitors both 

virtual and physical resources through status checks 

[10]. NEB2REST extends the Nagios platform by 

serving as an event brokering platform that uses an API 

to integrate with Nagios and capture cloud monitoring 

data. Nagios was chosen by [10] for its flexibility and 

compatibility with APIs. According to [10], 

NEB2REST employs the Libvirt API, which provides 

APIs for monitoring CPU utilisation, memory usage, 

disk I/O, and network I/O for virtual machines [23]. 

NEB stands for Nagios Event Broker. 
[10] further highlights that NEB2REST is easy and 

convenient to adopt, relying on well-established and 

tested technologies. It is flexible and adaptable to 

different cloud environments, capable of monitoring 

both physical and virtual cloud platforms. 

Additionally, NEB2REST is a scalable monitoring 

platform that can easily adapt to various user-defined 

monitoring parameters. The architecture of 

NEB2REST is illustrated in Figure 3 below. 

 
Figure 3: NEB2REST Architecture [10] 

The NEB2REST architecture includes a database for 

storing monitoring data, which can be queried for 

historical monitoring information. However, the main 

drawback of the NEB2REST framework is its heavy 
data exchange between APIs, which can slow down 

performance due to increased data traffic [10]. 

6.4 State Machine Replication 

State Machine Replication (SMR) was employed by 

[11] to enhance the resilience of the monitoring system 

against various types of failures, thereby ensuring the 
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reliability of system and network monitoring. 

According to [40], a state machine comprises state 

variables that encode the state and commands that 

transform the state. The primary objective of SMR is 

to emulate a centralised service within a distributed 
system by replicating the state across multiple hosts, 

ensuring that the failure of a single host does not 

compromise the entire system [39]. 

SMR involves multiple hosts, where communication 

and transactions from the primary system are 

replicated to all other hosts, maintaining a consistent 

system state across all hosts. In the event of a primary 

system failure, a secondary system assumes control of 

the entire cloud system’s operations. SMR utilises 

atomic broadcast, guaranteeing that each agreed-upon 

value is in a consistent state [39]. This fault-tolerant 

mechanism ensures the continuous operation of a 
cloud monitoring system, even if one component fails 

or becomes faulty. 

SMR is particularly suited for services requiring high 

availability and rapid recovery times [38]. Virtual 

machine monitoring services can leverage state 

replication to monitor various metrics. Cloud 

computing resources are billed based on usage, and 

this billing information is captured only when 

resources are monitored. SMR was utilised in [8] to 

ensure the fault tolerance of monitoring services, 

preventing data loss when a component of the cloud 
system fails. 

SMR implements fault tolerance in distributed systems 

by replicating servers and coordinating client 

interactions with server replication [40]. By employing 

SMR in virtual machine monitoring, cloud service 

providers ensure that failures are isolated from the 

entire cloud system, meaning that a failure in one 

component does not affect the entire system [40]. 

Figure 4 below illustrates a conceptual representation 

of the SMR architecture. 

 
Figure 4: State Machine Replication (SMR) 

[8][10][39][40] 

In Figure 4, a client initiates a request to VM1 via the 

network, which then forwards the same request to 

VM2. Both VM1 and VM2 receive identical requests, 

ensuring synchronisation. During this process, VM1 

also sends interrupt requests to VM2. Upon receiving 

these interrupt requests, VM2 discards the packets 

intended for client feedback, recognising that VM1 is 

active through the interrupt signals. If VM2 does not 
receive the interrupt signal from VM1, it assumes 

control and begins processing all client requests. The 

absence of interrupt signals from VM1 indicates to 

VM2 that VM1 is in a failure state and unable to 

process client requests. Consequently, VM2 takes over 

and handles all incoming client requests. 

For SMR to achieve fault tolerance, it must maintain 

at least three replicas, following the formula (2f + 1) 

[40]. This approach is analogous to the (2N + 1) 

modular redundancy proposed by [41], which involves 

two active nodes and one standby node. This 

configuration ensures high availability in cloud 
systems. If one node fails, the second node takes over; 

if the second node also fails, the third standby node 

assumes processing responsibilities while the other 

nodes are being recovered [41]. 

6.5 Regression Analysis 

Regression analysis was employed in [12] and [43] to 

enhance predictive and forecasting capabilities. There 

are two primary forms of regression analysis: linear 

regression and logistic regression. According to [44], 

regression analysis is extensively utilised for 

prediction and forecasting. In certain contexts, it can 
also be used to infer causal relationships between 

independent and dependent variables. 

Linear regression is a statistical method used to 

demonstrate correlations between a criterion or 

response variable (dependent variable) and one or 

more predictor variables (independent variables) 

[43][44]. Logistic regression, on the other hand, is a 

statistical method used to predict the probability of an 

outcome using the Sigmoid function. This method is 

based on binary dependent variables, typically coded 

as 0 and 1, representing two possible outcomes such as 

On/Off, success/failure, or healthy/sick [43][44]. 
Regression techniques can extract meaningful 

information about workload behaviour, leading to 

workload characterisation. This process utilises the 

Virtual Machine Monitor (VMM) interface. As posited 

by [12], data collected at the VMM level can be used 

for workload characterisation, which in turn can 

monitor the behaviour of applications on virtual 

machines. Workload characterisation is valuable for 

workload scheduling, analysing workload trends, 

security analysis, online performance monitoring, and 

virtual machine health monitoring [12]. VMM based 
workload profiles can also be used to compare 

malicious behaviour with normal behaviour, aiding in 

the identification of malicious attacks on virtual 

machines [12]. 

In the regression technique, data is collected from the 

virtual machine by a front-end system, which then 

generates features from the collected VMM data. This 

data is subsequently transferred to the backend, where 

regression is used to characterize the workloads. 
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Multiple least squares regression and the Least 

Absolute Shrinkage and Selection Operator (LASSO) 

algorithms are applied to the generated features to 

characterise the workloads and build a model of 

workload behaviour. 
In [43], an overload host detection algorithm based on 

linear and logistic regression was used to monitor the 

utilisation of cloud resources. Monitoring data is 

collected from virtual machines and processed by 

regression modules comprising linear and logistic 

regression. 

The linear regression model is represented by the 

following equation: 

 

 
Equation 1: Linear Equation [43] 

Equation 1 is a fundamental linear equation used in 

various fields such as statistics, economics, and 

machine learning. y denotes the estimated value; it is 
the dependent variable. This is the outcome or the 

variable you are trying to predict or explain. x is the 

predictor value; it is the independent variable. This is 

the input or predictor variable that influences the 

dependent variable. b0 is the slope of the line. It is also 

known as the y-intercept, it is the value of (y) when (x) 

is zero. It represents the starting point of the line on the 

y-axis. b1 is the intercept, it is the slope of the line. 

This coefficient indicates how much (y) changes for a 

one-unit change in (x). It shows the relationship 

between the independent variable and the dependent 

variable. b0 and b1 are the regression coefficients and 

they are computed based on equations 2 and 3 shown 
below. 

 

 
Equation 2: computing the regression coefficient 

b0[43] 

 
Equation 3: Computing the regression coefficient 

b1[43] 

In equation 3, n is the length of the host utilisation 

history, x bar, and y bar are the means of xi and yi 

denotes the observation variables. 

On the other hand, the logistic regression model is 

represented by the equation shown below. 

 
Equation 4: Logistic regression [43] 

In equation 4, y represents the linear regression 

function. Figure 5 below shows the graphical patterns 

of linear and logistic regression when plotted on the 

XY plane. 

 
Figure 5: Linear Regression and Logistic Regression 

[43][44] 

 

 

6.6 Monalytics 

Monitoring and analysis techniques, collectively 

referred to as Monalytics [13], integrate monitoring 

and analysis systems to manage large-scale data center 
systems. According to [14], Monalytics is designed for 

efficiency and scalability, performing optimally in 

highly dynamic scenarios. It dynamically discovers 

resources to monitor and configure at runtime using 

monitoring agents. Monalytics implementations 

typically target virtualised cloud infrastructures, often 

integrating with the Xen Hypervisor. 

In [23], a system named MonArch was utilised to 

monitor large-scale cloud infrastructure. The 

MonArch system is capable of monitoring physical, 

virtual, and application layers within cloud 

infrastructure, demonstrating both scalability and 
extensibility. MonArch employs agents to collect 

monitoring data. As [23] further elucidates, monitoring 

and analytics are fundamental enablers for providing 

visibility and insights in large-scale cloud 

infrastructure. A robust monitoring system should 

possess the capabilities to collect and analyse 

monitoring data. Such a system aids system 

administrators in detecting anomalies, identifying SLA 

violations, and triggering predefined management 

functions for automated corrective actions. These 

predefined management functions include stored 
procedures, algorithms, and autonomic functions that 

adjust resource allocation based on utilisation by either 

increasing resources when over-utilised or reducing 

them when under-utilised and idle. This scalability 

feature distinguishes cloud computing from earlier 

models such as grid and cluster computing [55][56]. 

The optimal online deterministic algorithms and 

adaptive heuristics for energy and performance-

efficient dynamic consolidation of virtual machines in 

cloud data centers, as utilised in [45], could be 

integrated with the Monalytics framework proposed 
by [13]. These algorithms could form part of the 

automated management functions that detect over or 

under utilisation of cloud resources, thereby enhancing 

the efficient usage of cloud resources and minimising 

the need for human intervention. 

6.7 Complex Event Processing 
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Complex event processing involves querying data 

before storing it in a database, data is queried on the 

fly and not stored in a database. CEP is a method used 

to track and analyse streams of data about things that 

happen(events) and derive a conclusion from the data 
in real-time [15][46]. An event is any occurrence that 

has significance to the operation of a cloud system, an 

event could be the creation of a virtual machine or the 

launching of an application [17][46]. The main goal of 

CEP is to identify meaningful events in real-time in 

large volumes of rapidly changing and highly varied 

data so that cloud service providers can take immediate 

action and respond quickly to events that can have a 

major impact on the operation of a cloud system 

[17][46]. CEP allows the analysis of cause and effect 

relationships in real-time and this intern allows 

corrective action to be taken on virtual resources 
before these events negatively impact the operations of 

the cloud system. [46] further states that a complex 

event involves a broader category of events, and it 

typically involves correlations and analysis of multiple 

events through the detection of patterns, abstraction, 

and filtering. CEP processes different events that are 

generated at the same time in multiple locations of a 

cloud system [46]. Figure 6 below shows a conceptual 

diagram of CEP 

 
Figure 6: Complex Event Processing [18][19] 

In Figure 6, events are generated by various sources, 

including sensors, probes, IoT devices, and virtual 

machines. These events are processed in real-time by 

the complex event processor. If the processed events 

indicate an anomaly, such as overutilisation of a cloud 

resource or the failure of a sensor or virtual resource 

within the cloud infrastructure, immediate actions are 

taken. The results of the real-time processing trigger 

actions based on predefined stored procedures or 
algorithms. 

6.7.1 Advantages of Complex Event Processing 

The adoption of Complex Event Processing (CEP) as 

a method for monitoring virtual machines and other 

cloud resources offers several benefits. These benefits 

are elaborated upon in the sections below. 

6.7.1.1 Real-Time Insights 

Complex Event Processing (CEP) offers real-time 

insights into data from cloud infrastructure. This 

capability enables cloud service providers to detect 

and address failures promptly, thereby restoring any 

compromised components swiftly. Additionally, real-
time processing facilitates the identification of over-

utilised or under-utilised cloud resources, ensuring 

their efficient utilisation [46]. 

6.7.1.2 Detection of Complex patterns and 

relationships in real-time 

Complex Event Processing (CEP) enables the 

detection of intricate patterns and relationships from 

various sources in real-time. This capability surpasses 
the limitations of other monitoring techniques, which 

are often unable to achieve such real-time, 

comprehensive analysis [46]. 

6.7.1.3 Scalability 

Complex event processing systems can scale up and 

down depending on the volumes of events and data 

streams that are received in real-time [46]. 

6.7.2 Drawback of Complex Event Processing 

In as much as there are advantages to the adoption of 

CEP as a monitoring technique, there are some 

drawbacks as well. The drawbacks of using CEP are 

discussed in the sections below. 
6.7.2.1 Complexity 

Complex event processing systems are complex to 

design and maintain. Cloud service providers will face 

challenges when it comes to designing the rules and 

algorithms that are needed to run such sophisticated 

systems [46]. CEP systems require specialised system 

administrators and developers for the systems to be 

efficiently managed and maintained. 

6.7.2.2 Continual Evolution 

Complex Event Processing (CEP) systems must 

continuously evolve to accommodate changing event 
patterns and sources. Managing this constant evolution 

presents a significant challenge, given the dynamic 

nature of cloud environments where resources are 

frequently added and removed. The addition and 

removal of cloud resources generates new events and 

data streams, which must be monitored and integrated 

into the existing monitoring system [46]. 

6.8 Fine-Grained Monitoring 

[18] Proposes the use of SysOptic which is a fine-

grained monitoring system that is based on PMU 

(Performance Monitoring Unit) virtualisation to 

monitor virtual machines. A Performance Monitoring 
Unit (PMU) on the Central Processing Unit (CPU) can 

obtain fine-grained monitoring data by adopting 

interrupt sampling methods based on hardware events 

[18]. Cloud systems are dynamic and run in error-

prone environments, It is therefore important to 

employ fine-grained status monitoring and anomaly 

detection at run-time to underpin the design of reliable 

cloud systems. SysOptic is designed to support the 

sharing of PMU data and this data is used to 

simultaneously monitor multiple virtual machines 

[18]. In [47] a system called cMonitor was used to 
obtain fine-grained system semantics using virtual 

machine introspection, cMonitor can monitor all the 

processes and relate the processes to their network 

state. cMonitor can transparently monitor the network 

state outside the virtual machine [47]. In [48] a system 

called cherub was used to provide fine-grained 

protection of applications in untrusted environments. 

Cherub is mostly used for virtual machine security by 

using fine-grained memory access and flexible 
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security objectives [48]. Fine-grained monitoring was 

used for fault detection in [49].  The technique 

proposed in [49] uses fine-grained application fault 

detection based on the virtual machine monitor by 

monitoring system calls to the applications and 
monitoring the data.  

6.9 Virtual Machine Introspection 

Virtual Machine Introspection (VMI) is a technique 

employed to inspect a virtual machine externally, 

allowing for the analysis of the software running 

within it. This method, as utilised by [25], is 

predominantly applied for monitoring the security of 

virtual machines, particularly in the context of 

intrusion detection. According to [26], VMI enables an 

external security monitor to observe the behaviour of 

software inside a virtual machine, including the guest 

operating system. This capability is particularly 
advantageous for security administrators, as it 

facilitates the identification of illicit programs 

operating within a system, especially when the 

operating system kernel has been compromised. The 

primary objective of VMI is to enforce security 

policies in scenarios where the operating system is 

either untrustworthy or compromised [26]. 

[27] defines VMI as: 

“a technique for externally monitoring the runtime 

state of a system-level virtual machine. Monitors can 

be placed in another virtual machine, within the 
hypervisor, or any other part of the virtualisation 

architecture. For virtual machine introspection, the 

runtime state can be defined broadly to include 

processor registers, memory, disk, network, and any 

other hardware-level events [27].” 

VMI is a relatively nascent concept that necessitates 

further research to be firmly established as a virtual 

machine monitoring technique. It is inherently 

complex and demands specialised computing skills for 

effective utilisation in monitoring virtual machines and 

large-scale cloud infrastructures. 

 
VII. OBSERVABILITY 

Observability provides the capability to gain a 

profound understanding of the internal state of 

distributed systems, thereby facilitating the swift 

resolution of identified issues [50][51][57]. This is 

accomplished through the analysis of data generated 

by the system, which includes logs, metrics, traces and 

dependencies. The fundamental principle of 

observability is that by examining the outputs of a 

system, one can infer the internal state of that system 

[53][54][58]. Observability encompasses the 
utilisation of software tools and practices that assist in 

aggregating, correlating, and analysing streams of 

performance data from cloud systems. By employing 

these tools and practices for performance monitoring, 

cloud service providers can effectively monitor, 

troubleshoot, and debug applications operating within 

the cloud environment [53][54]. The primary objective 

of observability is to ensure a comprehensive 

understanding of the internal state of a cloud system, 

which aids in identifying anomalies or potential 

failures, thereby ensuring the system’s availability and 

adherence to service level expectations. 

According to [50], the term ‘observability’ is derived 

from control theory, a branch of engineering focused 
on the automation of control in dynamic systems. 

Examples of automated control include regulating the 

flow of water through a pipe or controlling the speed 

of a vehicle over varying terrains based on feedback 

received from the system [50]. 

Application monitoring systems periodically sample 

and aggregate system data, referred to as telemetry. 

Telemetry aggregated by these monitoring systems 

alerts cloud service providers to abnormal conditions, 

thereby aiding in the resolution of potential issues 

within the cloud infrastructure [51][52]. 

7.1 Main Telemetry types 
Application monitoring platforms continuously 

discover and collect performance telemetry. This is 

accomplished by integrating with existing 

instrumentation embedded within applications and 

cloud infrastructure. Observability focuses on the 

following telemetry components: 

7.1.1 Logs 

Logs are granular, time-stamped, complete, and 

immutable records of application events. Logs record 

every event, with the complete context surrounding the 

event. Logs can be used for troubleshooting and 
debugging purposes by developers and system 

administrators. Logs therefore consist of application 

and system specific details about the operations and 

flow of control within a cloud system. 

[52][53][57][58] state that logs provide context for the 

state of the application when metrics are captured. 

7.1.2 Metrics 

Metrics are the fundamental measures of application 

and system health over a given period of time. Metrics 

measure system aspects like memory and processor 

usage over a period of time [52][53]. 

7.1.3 Traces 
Traces record the end-to-end journey of every user 

request or system event. They record what happens in 

the entire distributed system and the activity can be 

traced back to a particular user [52][53]. 

7.1.4 Dependencies 

Dependencies reveal how each application component 

depends on other components, applications, and other 

cloud resources [51]. 

Once applications have gathered the telemetry data, 

the applications then aggregate and correlate this data 

in real-time and this process provides background 
information to cloud service providers that help them 

gain a deeper understanding of why the system is slow 

or why certain resources are above the agreed 

threshold [51][52][53][54][57][58]. 

7.2 The Difference between Monitoring and 

Observability 

Monitoring and observability are closely related 

concepts that help cloud service providers monitor the 

cloud infrastructure and identify potential problems. 
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Both monitoring and observability involve collecting 

and aggregating data in order to understand or get 

insights into the performance and health of the cloud 

infrastructure [52][53][54][57][58]. The main 

difference is that monitoring captures and displays 
data about certain defined metrics while observability 

helps with discerning the health of the cloud 

infrastructure by analysing its inputs and outputs. With 

monitoring, a defined metric can be observed for a 

period of time for changes in order to deduce that there 

is a problem [52]. With observability, a system will 

emit data about its internal state and this data is very 

essential in identifying the root cause of a problem in 

the system. Monitoring will provide a limited view of 

the system and the main focus is on individual metrics 

[51], while monitoring will show that there is a 

problem with the system, observability will help the 
system administrators pinpoint the root cause of the 

problem. 

 

 

VIII. Conceptual Framework 

 
Figure 7: Cloud Resource Monitoring and 

Observability Conceptual 

Framework[51][52][53][54] 

Figure 7 elucidates that the effective monitoring of 

cloud resources necessitates a profound understanding 

of the intrinsic characteristics of cloud monitoring 

systems. It is imperative to acknowledge that cloud 

computing represents a unique paradigm, 

distinguished by its scalability and elasticity. 

Therefore, a cloud monitoring system must address 

these distinctive attributes of cloud computing while 

incorporating the discussed characteristics of cloud 

monitoring systems. However, monitoring cloud 

resources in isolation is insufficient. To obtain deeper 

insights into the state of the cloud system, 

observability must also be employed. 

Observability entails the examination of logs, metrics, 
traces, and dependencies, as these elements furnish 

detailed information regarding the internal state of the 

cloud system. 

IX. CONCLUSION 

Cloud computing has fundamentally transformed the 

landscape of computing, evolving into an increasingly 

complex technology with the advent of new user 

demands and emerging technologies. Consequently, it 

is imperative to implement robust cloud resource 

monitoring to pre-emptively identify faults before they 

escalate into system failures caused by defective 

components or resource over-utilisation. 
Virtual resource monitoring techniques are essential 

for cloud service providers to oversee their cloud 

infrastructure, thereby ensuring that the service level 

expectations of cloud consumers are consistently met. 

However, the surveyed techniques are inherently 

complex and introduce additional processing 

overheads to the cloud system. The objective is to 

adopt lightweight monitoring techniques that do not 

hinder the normal operations of the cloud system due 

to their processing demands. 

Cloud service providers must select monitoring 
techniques that are best suited to their specific 

environments and employ observability to gain a 

comprehensive understanding of the root causes of 

cloud system failures and outages. By integrating 

observability with monitoring, the combined 

capabilities of both approaches can be harnessed, 

resulting in more reliable cloud systems with reduced 

failure rates. Observability provides cloud service 

providers with deeper insights into the system state, 

facilitating a clear understanding of failures or 

potential causes of system disruptions. Through the 

analysis of traces, logs, metrics, and dependencies, 
observability aids in the root cause analysis, enabling 

the identification and resolution of faulty components 

within the cloud infrastructure.
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