

ZAMBIA INFORMATION COMMUNICATION TECHNOLOGY (ICT) JOURNAL

Volume 9 (Issue 1) (2025) Pages 38-53

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 38

An Overview of Virtual Machine Monitoring Techniques and

Observability
Yolam Zimba1, Hastings Maboshe Libati2, Derrick Ntalasha3

Copperbelt University

1. yzimba@gmail.com; 2. libati@cbu.ac.zm; 3. dbnatalasha@gmail.com

Abstract-The adoption of cloud computing systems is

rapidly increasing, necessitating robust monitoring to

ensure optimal performance and a comprehensive

understanding of the internal state of these systems.

Effective monitoring is crucial for early anomaly

detection and preventing potential failures. Unlike grid

computing, cluster computing, and high-performance

computing. Cloud computing introduces unique features

such as scalability and elasticity, which require

specialised monitoring approaches. Existing literature

indicates that traditional monitoring tools from previous

computing paradigms have been adapted for cloud

systems. However, these tools often fall short due to the

distinct characteristics of cloud environments. This

paper identifies a significant gap in research on

monitoring techniques specifically designed for virtual

resources and highlights the importance of observability

in cloud systems. Observability, which facilitates root

cause analysis, is essential for quickly resolving faults by

examining the internal state of the cloud system. This

paper explores the primary characteristics of cloud

monitoring tools, providing examples of currently used

tools and their features. Additionally, it surveys virtual

machine monitoring techniques and emphasises the

critical role of observability in ensuring the rapid

resolution of issues through logs, metrics, traces, and

dependencies.

Keywords: Cloud Computing, Virtual Resources, Virtual

Machine, Monitoring, observability

I.INTRODUCTION

Cloud computing is increasingly adopted by

institutions as an innovative method for hosting
applications and delivering computing services to

consumers. By utilising virtualisation technology,

cloud computing creates a seemingly infinite pool of

virtual resources for users. These resources are offered

in a multi-tenant manner, facilitated by virtualisation

technology, allowing for the virtualisation of memory,

storage, processors, and networks. Cloud consumers

can dynamically add or remove computing resources

based on their processing needs with minimal

interaction with the service provider.

In cloud computing, virtual resources are categorised

under Infrastructure as a Service (IaaS), which forms

the foundational layer upon which other cloud service

models are built. The ability to provision and de-

provision resources such as storage, processors, and

virtual machines on an ad hoc basis renders cloud

computing both dynamic and complex. Applications

hosted on virtual machines in the cloud necessitate

continuous monitoring of virtual resources to ensure

optimal performance and availability. This proactive

monitoring is essential to detect and resolve issues

before they escalate into system failures.

A virtual machine (VM) is a software-based emulation

of a physical machine, capable of emulating various

computer hardware components such as processors,

storage, and network devices. Virtualisation
technology, which underpins cloud computing,

enables the efficient utilisation of hardware resources

by creating a layer of abstraction over physical

machines. This abstraction allows for the sharing of

computing resources, enabling individual VM’s to run

different operating systems and configurations while

behaving as independent computers on the same

physical hardware.

The management of VMs is facilitated by the

hypervisor, a software layer that coordinates VMs by

providing an interface between them and the physical

hardware. Virtual resource monitoring is essential for

tracking the state of cloud infrastructure and the

applications running on it. Monitoring benchmarks or

thresholds are typically defined in the service level
agreement (SLA) between the cloud service provider

and the consumer.

While monitoring can reveal issues with VMs or cloud

resources, observability is crucial for identifying the
exact cause of these problems. Observability

telemetry, which includes logs, metrics, traces, and

dependencies, provides deep insights into the state of

the cloud system. This telemetry is used for root cause

analysis after monitoring has detected an issue.

Understanding the motivation for cloud monitoring

and the various techniques used to monitor cloud

resources is vital for managing the cloud infrastructure

and detecting anomalies before they impact normal

cloud operations. It is equally important to grasp the

concept of observability and to employ both

monitoring techniques and observability to efficiently

manage cloud platforms. By leveraging monitoring

and observability, we can reduce the failure rates of

mailto:yzimba@gmail.com
mailto:libati@cbu.ac.zm
mailto:dbnatalasha@gmail.com

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 39

cloud systems and gain a comprehensive

understanding of their internal states, enabling

effective root-cause analysis.

This paper undertakes a systematic literature review

methodology to analyse the current landscape of

virtual machine (VM) monitoring techniques and

observability practices within cloud computing

environments. To structure this analysis, we employ

taxonomic classification to categorise cloud

monitoring tools into commercial and open-source

offerings. Furthermore, a comparative analysis is

conducted to highlight the distinctions between

traditional monitoring approaches and cloud-native

solutions, with a particular focus on their

capabilities.

This study is guided by the overarching research

question:

How can virtual machine monitoring and

observability techniques be optimised to enhance the

reliability and performance of cloud systems?

To address this primary question comprehensively,

the following subsidiary research questions (RQ) are

explored:

RQ1: What are the limitations of traditional

monitoring tools when applied to cloud

environments?

RQ2: Which techniques are identified as most

effective for virtual machine monitoring in the

cloud?

RQ3: How does observability complement traditional

monitoring methodologies to improve root cause

analysis in complex cloud systems?

RQ4: What are the essential characteristics of an

effective and robust cloud monitoring system?

RQ5: How do commercial and open-source

monitoring tools compare in their ability to address

the unique challenges of cloud environments?

The structure of this paper is as follows: Section 2.0

elucidates cloud resource monitoring and the

underlying motivations for its implementation. Section

3.0 addresses the monitoring of virtual machines.

Section 4.0 investigates the fundamental

characteristics of an effective cloud monitoring
system. Section 5.0 provides a review of existing cloud

monitoring systems and their attributes. Section 6.0

delves into techniques for virtual machine monitoring.

Section 7.0 explores the concept of observability.

Section 8.0 introduces a conceptual framework.

Finally, Section 9.0 offers concluding remarks.

II.CLOUD RESOURCE MONITORING

The inherent complexity of cloud computing arises

from the multitude of resources and virtual instances

encompassing processing, memory, storage, and

networking. These resources contribute to the

complexity as they are distributed across the cloud

infrastructure, with cloud consumers dynamically

adding and removing resources based on their ad-hoc

processing needs. This process occurs with minimal
interaction from service providers, often resulting in a

lack of control over the number of virtual resources

being managed. Consequently, continuous monitoring

of these resources is imperative to ensure they operate

within predefined parameters or thresholds. According

to [6], the increasing complexity of cloud

infrastructure necessitates enhanced resource

monitoring to maintain operational efficiency and

manage this complexity. Furthermore, [6] highlights

that cloud monitoring is integral to cloud computing,

as it enables service providers to predict and track the

evolution of parameters related to Quality of Service
(QoS), availability, and overall system performance.

This capability allows service providers to plan and

adapt cloud resources based on monitoring outcomes,

ensuring that service level requirements are

consistently met.

The primary objective of cloud monitoring is to ensure

that cloud service providers deliver reliable and

optimally performing services and applications. This

practice reduces the failure rate of cloud systems,

thereby enhancing the reliability of services provided

to cloud consumers [60]. Additionally, cloud
monitoring facilitates superior consumer experiences

by enabling the prompt identification of

vulnerabilities, allowing for the resolution of

bottlenecks before they lead to system failures. It also

safeguards sensitive and confidential data by

monitoring for security breaches, ensuring compliance

with privacy and security regulations [60]. As the

adoption of cloud computing continues to rise,

monitoring the health and status of cloud resources

becomes a critical aspect of managing cloud

computing platforms for both service providers and

consumers [67].
2.1 The Motivation for Cloud Resource Monitoring

Monitoring encompasses the collection, aggregation,

processing, and display of quantitative data pertaining

to a system, including metrics such as error counts and

processing times [70]. Several factors drive both cloud

service providers and consumers to engage in cloud

resource monitoring. The motivating factors for cloud

monitoring are discussed below.

2.1.1 Capacity Planning

Monitoring enables cloud service providers to ensure

the availability of sufficient resources to meet the
service level demands of their consumers. By

maintaining an optimal amount of computing

resources, providers can deliver cloud systems and

services that adhere to the required quality of service

standards [5][66][69]. Furthermore, monitoring

facilitates capacity planning by tracking the utilisation

of cloud resources. Through this process, both cloud

service providers and consumers can identify

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 40

resources that need to be scaled up to meet the

processing demands of the cloud environment.

2.1.2 Service and Resource Provisioning

By monitoring the utilisation of cloud services and

resources, cloud service providers can adjust these
services and resources to meet the demands of their

consumers. Cloud resources can be provisioned either

dynamically or statically. In dynamic provisioning, the

workload demands of the consumer dictate the amount

of resources required. Conversely, in static

provisioning, the cloud resources remain fixed once

they are defined. Cloud monitoring facilitates optimal

service and resource provisioning for cloud service

providers [5][66].

2.1.3 Configuration Management

System configurations consist of defined parameters

that dictate how a system operates. These parameters
are periodically adjusted to meet system demands or to

modify services. Efficient configuration management

is achievable only through the monitoring of cloud

resources. By tracking deviations in the adjusted

parameters, cloud service providers can ensure that

changes made to the cloud environment are effective

and enhance the operations of the cloud system

[5][66][69].

2.1.4 Fault Management

The inherent complexity of cloud environments

necessitates continuous monitoring to identify the root
causes of faults. In the absence of a monitoring system,

pinpointing the specific elements responsible for cloud

system failures would be exceedingly challenging.

Cloud consumers require monitoring to diagnose the

causes of failures within their cloud systems, which

can only be accurately determined through the

implementation of a robust monitoring system

[5][66][69].

2.1.5 Security Management

The security of cloud environments is a critical factor

influencing the adoption of cloud computing systems

[5]. Cloud consumers require assurance that their data
and systems are secure when hosted in the cloud.

Consequently, security monitoring and management

have become integral components of cloud service

offerings. Cloud service providers must be capable of

monitoring cloud systems to detect and respond to

security breaches and attacks effectively.

2.1.6 Service Level Agreement Management

A Service Level Agreement (SLA) is a contractual

document established between the cloud consumer and

the cloud service provider. It delineates the agreed-

upon service offerings, encompassing quality of
service (QoS), pricing, and penalties. Monitoring SLA

violations necessitates a robust cloud monitoring

system, which is crucial for ensuring consumer

satisfaction [66].

An effective cloud monitoring system should possess

capabilities such as measuring QoS parameters,

storing and analysing data, assessing resource

consumption, and evaluating SLA compliance [5][66].

2.1.7 Accounting and Billing

A fundamental characteristic of cloud computing is its

metered usage model, wherein services are billed

based on consumption, akin to a utility. It is imperative

for both the cloud service provider and the cloud

consumer to reach a consensus on the billing
mechanisms. The accuracy and transparency of

accounting and billing information can only be

ensured through comprehensive monitoring.

III. VIRTUAL MACHINE MONITORING

Virtual machines (VMs) host applications that operate

within the cloud environment. Consequently, it is

imperative to monitor the availability, performance,

and overall health of these virtual machines to ensure

that cloud consumers can access cloud applications

and that cloud service providers meet their service

level requirements.

Virtual machine monitoring is defined as the process
of overseeing virtualised instances or resources across

a network [6]. This monitoring is typically conducted

using software tools that analyse logs continuously

generated by the virtual machine instances. The

availability, health, and performance metrics of these

instances are displayed on dashboards, which present

the data in graphical formats. Cloud service providers

utilise these dashboards to detect and respond to

anomalies in memory, processing, storage, and

network parameters.

Given that cloud consumers frequently add and
remove virtual resources on an ad-hoc basis, the cloud

environment is inherently dynamic and complex,

making it susceptible to failures. Therefore,

monitoring plays a crucial role in ensuring that the

cloud infrastructure remains reliable, highly available,

and maintains optimal Quality of Service (QoS).

IV. ESSENTIAL CHARACTERISTICS OF A

CLOUD MONITORING SYSTEM

Cloud monitoring systems continuously collect and

verify information regarding the state of cloud

resources. This process generates data, information,

and knowledge that enable cloud service providers to
measure, assess, and effectively manage both

hardware and software infrastructures [59]. Given the

complexity of cloud computing systems, monitoring

systems must possess characteristics that are adaptive

to the dynamic nature of cloud environments. Effective

monitoring is essential to detect faults before they

adversely impact the cloud system.

Cloud systems must exhibit essential characteristics to

meet the expectations of both cloud consumers and

service providers. According to [55], many cloud

monitoring tools have been adapted from those
originally developed for grid computing, cluster

computing, and High-Performance Computing (HPC)

systems. However, cloud computing systems differ

significantly from these architectures due to their

inherent scalability and elasticity [55][56][59]. As [67]

posits, elasticity is a defining characteristic that

distinguishes cloud computing systems from previous

paradigms such as grid computing and HPC. This

unique attribute necessitates that cloud monitoring

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 41

systems align with the specific characteristics of cloud

computing. Consequently, conventional monitoring

tools are inadequate for cloud environments, as they

were not designed with the unique demands of cloud

systems in mind [67].
The following section outlines the essential

characteristics that cloud monitoring systems should

possess.

4.1 Scalability

A monitoring system is considered scalable if it can

effectively manage numerous probes. It must maintain

stability and efficiently handle a substantial number of

probes used to collect monitoring data, as required by

cloud consumers or service providers. Cloud

computing systems utilise a combination of physical

and virtual resources, generating significant amounts

of data. The monitoring system should be capable of
processing and analysing these vast data volumes from

various cloud resources and sources (both physical and

virtual) without adversely affecting the normal

operations of the cloud systems [5][24][55][63].

According to [61] and [64], a cloud monitoring system

collects data from diverse cloud resources, filters,

aggregates, analyses, and ultimately reports this data,

which is then utilised for decision-making. This entire

process necessitates computing resources.

Consequently, the cloud system must handle this

processing without disrupting its normal functioning.
Furthermore, [62] and [63] observe that monitoring

distributed systems involves data collection,

interpretation, and the display of information related to

the interactions of concurrently executing processes

within the distributed system. This observation

underscores the necessity for cloud monitoring

systems to be scalable and not impede the regular

operations of the cloud system.

4.2 Elasticity

Cloud systems are inherently dynamic, characterised

by the continuous addition and removal of resources.

Cloud consumers can augment computing resources as
needed with minimal interaction from service

providers, presenting a significant challenge to the

monitoring system. The monitoring system must adapt

to these dynamic changes, accommodating resources

added on an ad-hoc and random basis, and accurately

report monitoring information for billing and service

level agreement (SLA) compliance [5][24][55][63].

The capacity of the cloud monitoring system to adapt

to the addition and removal of cloud computing

resources is referred to as dynamism [5][65].

Elasticity, a defining feature of cloud computing,
distinguishes it from other computing paradigms such

as grid computing. Previous paradigms were static and

lacked the ability to expand and contract based on

resource addition or removal [67]. Cloud computing

resources, however, expand and contract according to

user requirements. These fluctuating resources must be

monitored to ensure accurate billing and resource

utilisation reporting. The cloud monitoring system

should enable cloud service providers and consumers

to modify the metrics being monitored without

disrupting the overall operation of the cloud system.

Resources should be added and removed seamlessly,

without impeding the system’s overall functionality

[65].
4.3 Adaptability

This characteristic necessitates that a cloud monitoring

system must adapt to varying network and

computational loads without impeding the operation or

functions of other activities. According to [5] and [24],

cloud systems exhibit significant dynamism in their

operations, making adaptability a critical attribute for

a cloud monitoring system. A cloud monitoring tool

should maintain its normal operations even when the

monitored environment changes by the addition or

removal of resources. Adaptability implies that a

monitoring system should assist in fault mitigation and
provide accurate monitoring information, even when

resources are added or removed from the cloud

environment on an ad-hoc basis, without disrupting the

normal operations of the cloud system [66].

4.4 Timeliness

Cloud monitoring systems must provide timely

notifications to enable administrators, cloud

consumers, and cloud service providers to act before

the cloud system reaches a state of failure [5][24][63].

A monitoring system that fails to deliver prompt

notifications is ineffective. Real-time monitoring of
cloud resources is essential, as it provides critical

information about the state or health of the cloud

infrastructure. These real-time insights help prevent

system failures by detecting anomalies early and

allowing for prompt intervention. Timeliness is thus a

crucial characteristic of cloud monitoring systems, as

it contributes to reduced failure rates. Lower failure

rates in cloud computing enhance the confidence of

cloud consumers in cloud services and applications.

According to [67], the integration of artificial

intelligence and machine learning can enable cloud

monitoring systems to automatically detect faults
within the cloud environment and apply remediation

techniques to prevent system failures. This approach,

known as autonomic computing, involves designing

computer systems that can reconfigure their

parameters when a component exceeds prescribed

thresholds. Autonomic systems are self-healing and

self-configuring, requiring minimal human

intervention.

4.5 Autonomicity

An autonomic monitoring system possesses the

capability to self-manage its distributed resources by
automatically responding to unpredictable changes

[5][24][55][63]. These systems can reconfigure

themselves without human intervention, effectively

concealing complex details from both the cloud

consumer and the cloud service provider [55].

Autonomic systems are designed to self-heal and

recover from critical errors autonomously. This

characteristic is essential for cloud monitoring systems

due to the dynamic and ever-changing nature of cloud

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 42

environments. Virtual machines are frequently created

and destroyed based on the needs of the cloud

consumer, resulting in a constantly evolving cloud

environment. Autonomicity facilitates the

maintenance of failure-free cloud systems by enabling
the monitoring system to adapt to varying monitoring

parameters and promptly communicate this

information. This adaptability significantly reduces the

likelihood of faults that could lead to errors and,

ultimately, the failure of the cloud system.

4.6 Resilience, Reliability and Availability

A monitoring system is considered resilient when it

can continue its intended function despite the failure of
other components. Resilient monitoring systems are

essential for cloud environments, as they must provide

critical monitoring information related to billing, SLA

compliance, and resource management. Therefore, a

monitoring system must withstand component failures

and continue performing its intended monitoring

functions as expected [5][24].

Reliability in monitoring systems is defined as the

ability to perform the required functions under

specified conditions for a specified period [68]. Cloud

monitoring systems must be reliable and function as
required. Additionally, cloud systems are deemed

available when they provide services according to their

design specifications whenever users or administrators

access the monitoring system. The monitoring system

should consistently be available and responsive to user

requests [68].

4.7 Accuracy

A monitoring system is deemed accurate when the

measurements it provides closely align with the actual

metrics being assessed. This accuracy is a crucial

characteristic of a cloud monitoring system, as precise

monitoring information is essential for the effective
oversight of cloud systems [5][24][63]. Cloud systems

track the usage of resources to bill consumers based on

their resource consumption. Accurate billing is

contingent upon the cloud system’s ability to precisely

monitor resource usage and provide reliable usage data

for both billing and resource management purposes.

V.CLOUD MONITORING PLATFORMS

Section 4 examined the primary characteristics of

cloud monitoring systems. This section focuses on the

principal platforms utilised for monitoring cloud

computing systems. Cloud monitoring platforms are
categorised into two categories: commercial and open

source. The section below provides a summary of

these monitoring platforms, their respective

categories, and the key characteristics exhibited by

each tool in relation to the characteristics discussed in

section 4.

5.1 CloudWatch

Amazon provides a comprehensive monitoring

platform known as Amazon CloudWatch. This service

is capable of monitoring various AWS resources,

including Amazon EC2 instances. CloudWatch

collects and aggregates monitoring data, which is then

stored in a database for a retention period of two

weeks. Users can utilise this stored data to analyse and
visualise performance metrics of their cloud instances,

thereby gaining insights into their operational

efficiency and resource utilisation [5][66].

CloudWatch is categorised as a commercial

monitoring tool and its main characteristics are

timeliness, extensibility and elasticity.

5.2 AzureWatch

AzureWatch is a monitoring tool designed for users of

the Azure cloud platform. It is capable of collecting

key performance metrics related to various Azure

resources, including databases and applications. This
tool enables users to monitor and analyse the

performance and operational efficiency of their cloud-

based services, thereby facilitating informed decision-

making and resource optimisation [5][66].

AzureWatch is categorised as a commercial cloud

monitoring tool and its main characteristics are

scalability, adaptability, autonomicity and

extensibility.

5.3 CloudKick

This monitoring tool is provided by Rackspace, it is

designed to monitor key performance metrics such as
CPU utilisation and traffic volumes. This tool offers

real-time monitoring capabilities and can promptly

alert users to anomalies via email or SMS. By

providing timely and actionable insights, Cloudkick

enhances the operational efficiency and reliability of

cloud-based services [5][66].

Cloudkick is categorised as a commercial cloud

monitoring tool and its main characteristics are

scalability and adaptability.

5.4 CloudStatus

This monitoring tool supports Amazon Web Services

(AWS) and Google App Engine. Built on the Hyperic-
HQ platform, it provides comprehensive monitoring

information related to user application performance.

This tool is instrumental in conducting root cause

analysis when performance issues arise within the

cloud environment, thereby enhancing the reliability

and efficiency of cloud-based applications [5][66].

This tool is categorised as a commercial cloud

monitoring tool and its main characteristic is

timeliness.

5.5 Nimsoft

This tool offers a unified dashboard for monitoring
both public and private cloud infrastructures. It is

capable of overseeing cloud services such as Google

Apps, Rackspace, Amazon Web Services, and

Salesforce. Additionally, it can be utilised to monitor

Service Level Agreement (SLA) violations, thereby

ensuring compliance and optimising service

performance [5][66]. This tool falls under the

commercial category and its main characteristics are

scalability and comprehensiveness.[5][66].

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 43

5.6 Montis

Montis employs agents to gather data on monitored

resources, with a primary focus on Amazon Web

Services (AWS). This tool is designed to send alerts to

users in the event of any issues with the monitored
resources, thereby facilitating prompt response and

resolution [5]. This tool falls under the commercial

category and its main characteristic is

comprehensiveness.

5.7 LogicMonitor

LogicMonitor is predominantly utilised for monitoring

virtual infrastructure. It possesses the capability to

detect newly provisioned resources and commence

reporting monitoring data on these resources

immediately. Additionally, LogicMonitor can identify

and respond to the deletion of resources in real time.

The tool provides comprehensive monitoring
information through intuitive dashboards, thereby

enhancing visibility and management of virtual

environments [5]. This tool is categorised as a

commercial cloud monitoring tool and its main

characteristics are scalability, elasticity and

comprehensiveness.

5.8 Nagios

Nagios is a versatile tool employed for monitoring

cloud infrastructure. It is capable of overseeing virtual

instances and storage services. The Nagios platform is

highly extensible, allowing for the monitoring of
various aspects of both physical and virtual

infrastructure. This flexibility makes it an invaluable

resource for comprehensive infrastructure

management. Nagios is characterised as an opensource

cloud monitoring tool and its main characteristics are

adaptability and scalability [5][66].

5.9 OpenNebula

OpenNebula is a comprehensive toolkit designed for

managing distributed and heterogeneous cloud

infrastructure. It is capable of monitoring both cloud

and physical infrastructure, providing valuable

monitoring information to cloud providers.
OpenNebula collects monitoring data through probes

installed on the nodes being monitored, ensuring

accurate and timely insights into the performance and

status of the infrastructure [5][66]. This tool is

characterised as opensource and its main

characteristics are adaptability and scalability.

5.10 CloudStack

CloudStack is a robust platform utilised for the

deployment and management of extensive networks of

virtual machines. To monitor both virtual and physical

devices within CloudStack, a Zenoss extension known
as ZenPack is employed. This extension is responsible

for managing alerts and events related to monitored

parameters originating from zones, pods, and hosts,

thereby ensuring comprehensive oversight and

operational efficiency. This tool falls under the

opensource category and its main characteristic is

timeliness.

5.11 Nimbus

Nimbus is a comprehensive platform consisting of an

integrated suite of tools designed for monitoring,

instantiation, configuration, and repair of cloud

infrastructure. Predominantly utilised by the scientific

community, Nimbus supports a combination of
OpenStack, Amazon Web Services (AWS), and other

cloud infrastructures. This versatility makes it an ideal

platform for cloud deployment and monitoring within

scientific research environments. This monitoring tool

is classified as opensource, and its main characteristic

is autonomicity.

5.12 DARGOS

DARGOS is a sophisticated platform designed for

monitoring both virtual and physical resources. It

employs a distributed cloud monitoring architecture
that utilises a hybrid push and pull approach to

disseminate monitoring information. This platform is

characterised by its low overhead and has been

engineered to be both flexible and extensible.

DARGOS leverages agents to collect monitoring data,

such as resource usage, from the nodes under

observation. This tool falls under the opensource

category and its main characteristics are extensibility,

adaptability and intrusiveness.

5.13 Hyperic-HQ

Hyperic-HQ is a comprehensive platform that supports
the management and monitoring of cloud

infrastructures. It is capable of overseeing both virtual

and physical resources, providing detailed reporting

and analysis of the monitored assets. This platform

facilitates the collection of availability, performance,

utilisation, and throughput metrics, thereby enhancing

the operational efficiency and reliability of cloud-

based environments. This cloud monitoring tool falls

under the opensource category and its main

characteristics are scalability and comprehensiveness.

5.14 Sensu

Sensu employs message queuing to monitor cloud
systems, utilising RabbitMQ as its foundational

technology, as discussed in section 6.1. It leverages the

Advanced Message Queuing Protocol (AMQP) to

ensure the secure processing and communication of

messages that contain monitoring data. This approach

enhances the reliability and security of the monitoring

process, facilitating robust cloud infrastructure

management. Sensu is an opensource cloud

monitoring tool and its main characteristics are

extensibility and elasticity.

VI. VIRTUAL MACHINE MONITORING

TECHNIQUES

A variety of techniques are employed to monitor

virtual machines, driven by the need to ensure effective

capacity planning for cloud infrastructure and reduce

the failure rate by having key insights into the

performance of the cloud environment. These

techniques facilitate the detection of failures,

identification of underperforming resources, and

recognition of redundant cloud resources.

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 44

Additionally, they support the evaluation of cloud

systems and the detection of policy violations. This

section of the paper looks at various techniques that are

used to monitor virtual machines in cloud computing.

6.1 Message Queuing
A message queue is a service-to-service

communication mechanism utilised in distributed

systems. It operates asynchronously and is commonly

employed in serverless and microservice architectures.

Message queuing involves storing messages in a queue

until they are processed and subsequently deleted. This

approach facilitates communication between

distributed applications by maintaining a sequence of

work objects awaiting processing. Message queues

provide a buffer for messages when the destination

service is busy or offline, ensuring that messages are

retained in the queue until the receiver connects and
consumes the designated messages.

ZeroMQ, as discussed in [7], is a system that employs

message queuing to monitor virtual machines. It

collects key metrics from virtual machines via an API

(Application Programming Interface) and transmits

this information to a central monitoring server. The

server then compares the performance of the virtual

machine against a benchmark, and if resources are

found to be over-utilised, an alert is sent to the relevant

system administrator or cloud service provider.

ZeroMQ defines queues to which applications connect
to transmit messages, which are subsequently read by

the receiving application.

A message can contain information about a task,

process, or event. The queue retains the message until

the receiving application connects and retrieves it.

Message queuing ensures that no messages are lost,

even if the sender or receiver experiences a fault.

Messages remain in the queue until any issues with the

sender or receiver are resolved.

A message queue, also known as a message broker,

acts as an intermediary or middleware for various

services. It can reduce the load and delivery times of
web application servers by delegating resource-

intensive tasks, thereby enhancing overall system

efficiency.

The basic architecture of a message queue is shown

below.

Figure 1: Message Queue Architecture [21]

In Figure 1, the producer produces a message that is
published to the queue. The consumer connects to the

queue and consumes its assigned message. The

message queue keeps the message when the consumer

is offline so that the message can be consumed when

the consumer is back online.

Although message queueing has many advantages, it

has some drawbacks. One of the major drawbacks of

message queueing is the message queue itself, the

queue can become unreachable, and this poses a

problem as messages will not be received and

transmitted, this requires that fault-tolerant

mechanisms be used to ensure that the message queue

is highly available. Availability and performance
issues arise when applications fail to communicate

with the message queue [28]. The other drawback is

that message queueing adds a layer of complexity, this

complexity leads to increased processing and in some

cases slows down the operation of the system. In [23]

message queueing was used for the MonArch system,

the MonArch system used a message queueing

application called RabbitMQ. RabbitMQ is an open-

source message broker and its basic function is to

facilitate communication between various applications

by allowing the applications to communicate with each

other [28]. RabbitMQ acts as a middleman and
facilitates the exchange of messages between

applications. RabbitMQ is an intermediary for

messaging, it provides a safe space for messages to

reside until the intended consumer connects to the

message queue and consumes the message. The

difference between RabbitMQ and ZeroMQ is that

RabbitMQ relies on a message queue to transmit

messages while ZeroMQ does not need a message

queue. It is a brokerless message queue. Brokerless

message queues connect directly to the peers and

transmit messages directly. There is no broker
involved in this transaction [28]. In [30] GlassFish

Message queue is used by Oracle to monitor and tune

the performance of Oracle systems. GlassFish is a

message queueing application and can be configured

to monitor various metrics in a distributed system.

GlassFish just like any other message queueing system

pushes messages to a broker or message queue and the

messages are accessed or processed by a consumer

[30].

6.1.1 Advantages of Message Queues

Using message queues to monitor virtual machines has

several advantages. These advantages are discussed in
the sections below.

6.1.1.1 Asynchronous Messaging

Messages are added to the queue and only consumed

when the intended recipient (Consumer) is available.

This is useful when the consumer is busy with other

tasks. The message can wait in the queue and the

consumer can execute the message once it is done with

other tasks. The queue will continue accepting

messages and keep the messages until the consumers

are ready to consume their messages [29][30][31].

6.1.1.2 Concurrency
Multiple producers can send messages to the queue at

the same time. These messages are kept in the queue

as they are sent and the corresponding consumers can

consume the messages as and when they are sent to the

queue. The order in which the messages are sent does

not matter [29][30][31].

6.1.1.3 Monitoring

Message queuing systems have a monitoring feature.

This allows monitoring of the queue. This can help

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 45

with monitoring the throughput of the queue,

identifying problems with the queue, and gaining vital

insights and statistics about the queue [29].

6.1.1.4 Decoupling of Tasks

A large task can be broken down or decoupled and
pushed into the queue and it appears as a sequence of

tasks [29].

6.1.1.5 Persistence

Messages that are pushed to the queue are kept in the

queue until they are processed. Messages are only

deleted from the queue once they are consumed or

processed. Queues ensure that transactions go through,

and messages are only discarded when they have been

consumed [29][30][31].

6.1.1.6 Resilience

Message queues are resilient in that a faulty

component or consumer will not affect the overall
functioning of the queue. The other producers will

continue submitting messages to the queue. According

to [31] this prevents the faulty consumer or component

from affecting the entire functioning of the queue.

6.1.1.7 Inter-Application Connectivity

Different applications can access message queues and

consume messages that are in the queue. The language

or architecture used to develop the application does not

matter [29][31]. The ability of the message queues to

support various programming languages and protocols

is referred to as versatility [31].
6.1.1.8 Improved Security

Some message queuing systems can encrypt, identify,

and authenticate messages as they are submitted to the

queue. Messages can also be encrypted in transit, at

rest or end-to-end. This ensures that messages are

protected and this increases the overall security of the

queue [31].

6.1.1.9 Guarantee that transactions occur once

Message queues ensure that a transaction occurs once.

This is achieved by keeping the message in the queue

until the consumer consumes the message in the queue.

The message is only deleted from the queue after the
consumer has accessed the message. This ensures that

the transaction only occurs once [29][31].

6.2 Data Stream Management

In [8] a data stream management system (DSMS) was

used to develop a system capable of monitoring

multitenant cloud systems. DSMS is software that acts

like a Data Base Management System (DBMS). The

difference is that the DSMS handles continuous

streams of data and the queries are long-running,

standing, and persistent [22][33]. Stream data is data

that is emitted in real-time, in high volumes, in an
ordered sequence, and a continuous stream

[33][34][35]. Stream data is incremental and is good

for low-latency processing [32]. Stream processing

systems ingest a data sequence and incrementally

update metrics, reports, and summary statistics.

Stream processing systems comprise of a stream

producer and a stream consumer [32]. Stream

producers are software applications or devices that

collect stream data and pass on the collected data to the

stream consumer. Stream consumers are software

components that process and analyse stream data.

Stream producers could be IoT devices or probes that

are placed in an environment to continuously monitor

that environment based on defined metrics. Similarly,
probes can be placed in a virtual machine to monitor

the performance of the virtual machine. The probes

collect and transmit the metrics from the virtual

machine to a stream consumer which then processes

that data and provides real-time metrics that aid the

cloud service provider in detecting if the cloud system

is about to fail or take action when some of the key

metrics are above the prescribed threshold. Data

stream processing systems are mostly applicable in

scenarios where new and dynamic data is generated

continuously [32]. DSMS are therefore a perfect fit for

virtual machine monitoring due to the dynamic nature
of virtual machine monitoring data.

6.2.1 Challenges of Working with Data Streams

Stream data architecture significantly differs from

traditional Database Management Systems (DBMS) in

that it processes continuous streams of data,

introducing a higher level of complexity. According to

[36], real-time monitoring systems necessitate

distributed stream processing, which contrasts sharply

with the conventional processing of static data stored

in databases. Stream processing systems handle data in

real-time, presenting unique challenges. The following
are some of the challenges encountered when working

with data streams:

6.2.1.1 Availability

Streaming applications require consistent, low latency,

and high availability. Data stream consumers

constantly take in new streams of data and they are

constantly processing the data in real-time. This means

that delays from the producers could cause the system

to be in a state of error. Therefore, it is imperative for

data stream applications to maintain high availability

to ensure uninterrupted data consumption [32][37].

The requirement for availability is a challenge as it
brings about a level of complexity [32].

6.2.1.2 Scalability

Raw data streams can experience unexpected surges,

particularly during periods of increased system usage.

According to [32], such surges may occur during

events like social media posts related to major sporting

events. During these surges, the data stream system

must prioritise the sequencing of incoming data in real-

time. [33] posits that data stream management systems

(DSMS) order data implicitly based on arrival time and

explicitly by timestamps. This process demands a high
level of processing power and complexity.

Consequently, a DSMS must be capable of adapting to

increased processing demands and maintaining normal

functionality during periods of heightened data stream

activity [37].

6.2.1.3 Durability

Stream data is inherently time-sensitive, and any

disruption to the Data Stream Management System

(DSMS) can result in data loss. Once stream

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 46

processing data is lost, it cannot be recovered or

backtracked [33]. Therefore, stream processing

systems must be fault-tolerant to prevent the loss of

stream data [32]. The loss of access to the data stream

compromises the integrity of the processed data, as
certain data streams may be missed [37].

6.2.2 Architecture of a Data Stream Management

System

DSMS requires a unique architecture due to the nature

of the data that they process. The data in a DSMS is a

real-time, continuous, ordered sequence of items that

are classified or ordered by time of arrival or by a time

stamp. If the data is ordered by arrival time it is

considered as being implicit. If the data is ordered by

time-stamp it is considered explicit. The figure below

shows a conceptual architectural diagram of a DSMS.

Figure 2: Architecture of a DSMS [32][34]

Data streams that are processed by the DSMS come

from multiple sources. Some of the sources include

IoT devices, Probes, and event logs from virtual or
physical machines that can be of interest to the cloud

consumer or cloud service provider. The input monitor

is used to regulate the amount of streaming data that is

consumed by the DSMS. The input monitor regulates

the data streams by dropping some packets. Stream

data is stored in temporal working storage, the

summary storage, and the static storage. Long-running

queries are requested from the query repository. The

queries are usually placed in groups for shared

processing. The query processor communicates with

the input monitor and may re-optimise the queries in

response to the dynamic input rates. The output buffer
is used to temporarily store the results of the stream

processing for the user to view.

 [8] acknowledges the nature and complexity of the

cloud and emphasises the importance of monitoring

the cloud infrastructure to ensure that it is reliable and

highly available. [8] further theorises that cloud

monitoring can be used for fault detection and

proposes that data stream management systems be

used to achieve this.[9] affirms that cloud monitoring

is critical for cloud computing and various techniques

and methods must be researched so that cloud service
providers can meet the Service Level Agreements with

their cloud consumers and data stream management

systems can be used to monitor events that happen in

real-time through the use of continuous and persistent

queries to monitor the metrics collected from virtual

machines[33]. DSMS can be used for fault detection

and fault prevention in the systems that are being

monitored [34]. The ability of the DSMS to forecast

the data streams makes it suitable for monitoring

virtual machines as failures that might be experienced

by the virtual machine are detected before they occur

[34].
6.3 Plugins and Application Programming Interfaces

(APIs)

Plug-ins and Application Programming Interfaces

(APIs) are essential for integrating with most

monitoring tools. Cloud service providers define their

metrics and use APIs and plug-ins to extract

monitoring information. One such system,

NEB2REST, was utilized by [10]. NEB2REST is a

custom module that acts as a broker for low-level

monitoring infrastructure, enabling Nagios to

communicate monitoring information with a RESTful

web service via a plug-in.
Nagios, an open-source monitoring tool, monitors both

virtual and physical resources through status checks

[10]. NEB2REST extends the Nagios platform by

serving as an event brokering platform that uses an API

to integrate with Nagios and capture cloud monitoring

data. Nagios was chosen by [10] for its flexibility and

compatibility with APIs. According to [10],

NEB2REST employs the Libvirt API, which provides

APIs for monitoring CPU utilisation, memory usage,

disk I/O, and network I/O for virtual machines [23].

NEB stands for Nagios Event Broker.
[10] further highlights that NEB2REST is easy and

convenient to adopt, relying on well-established and

tested technologies. It is flexible and adaptable to

different cloud environments, capable of monitoring

both physical and virtual cloud platforms.

Additionally, NEB2REST is a scalable monitoring

platform that can easily adapt to various user-defined

monitoring parameters. The architecture of

NEB2REST is illustrated in Figure 3 below.

Figure 3: NEB2REST Architecture [10]

The NEB2REST architecture includes a database for

storing monitoring data, which can be queried for

historical monitoring information. However, the main

drawback of the NEB2REST framework is its heavy
data exchange between APIs, which can slow down

performance due to increased data traffic [10].

6.4 State Machine Replication

State Machine Replication (SMR) was employed by

[11] to enhance the resilience of the monitoring system

against various types of failures, thereby ensuring the

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 47

reliability of system and network monitoring.

According to [40], a state machine comprises state

variables that encode the state and commands that

transform the state. The primary objective of SMR is

to emulate a centralised service within a distributed
system by replicating the state across multiple hosts,

ensuring that the failure of a single host does not

compromise the entire system [39].

SMR involves multiple hosts, where communication

and transactions from the primary system are

replicated to all other hosts, maintaining a consistent

system state across all hosts. In the event of a primary

system failure, a secondary system assumes control of

the entire cloud system’s operations. SMR utilises

atomic broadcast, guaranteeing that each agreed-upon

value is in a consistent state [39]. This fault-tolerant

mechanism ensures the continuous operation of a
cloud monitoring system, even if one component fails

or becomes faulty.

SMR is particularly suited for services requiring high

availability and rapid recovery times [38]. Virtual

machine monitoring services can leverage state

replication to monitor various metrics. Cloud

computing resources are billed based on usage, and

this billing information is captured only when

resources are monitored. SMR was utilised in [8] to

ensure the fault tolerance of monitoring services,

preventing data loss when a component of the cloud
system fails.

SMR implements fault tolerance in distributed systems

by replicating servers and coordinating client

interactions with server replication [40]. By employing

SMR in virtual machine monitoring, cloud service

providers ensure that failures are isolated from the

entire cloud system, meaning that a failure in one

component does not affect the entire system [40].

Figure 4 below illustrates a conceptual representation

of the SMR architecture.

Figure 4: State Machine Replication (SMR)

[8][10][39][40]

In Figure 4, a client initiates a request to VM1 via the

network, which then forwards the same request to

VM2. Both VM1 and VM2 receive identical requests,

ensuring synchronisation. During this process, VM1

also sends interrupt requests to VM2. Upon receiving

these interrupt requests, VM2 discards the packets

intended for client feedback, recognising that VM1 is

active through the interrupt signals. If VM2 does not
receive the interrupt signal from VM1, it assumes

control and begins processing all client requests. The

absence of interrupt signals from VM1 indicates to

VM2 that VM1 is in a failure state and unable to

process client requests. Consequently, VM2 takes over

and handles all incoming client requests.

For SMR to achieve fault tolerance, it must maintain

at least three replicas, following the formula (2f + 1)

[40]. This approach is analogous to the (2N + 1)

modular redundancy proposed by [41], which involves

two active nodes and one standby node. This

configuration ensures high availability in cloud
systems. If one node fails, the second node takes over;

if the second node also fails, the third standby node

assumes processing responsibilities while the other

nodes are being recovered [41].

6.5 Regression Analysis

Regression analysis was employed in [12] and [43] to

enhance predictive and forecasting capabilities. There

are two primary forms of regression analysis: linear

regression and logistic regression. According to [44],

regression analysis is extensively utilised for

prediction and forecasting. In certain contexts, it can
also be used to infer causal relationships between

independent and dependent variables.

Linear regression is a statistical method used to

demonstrate correlations between a criterion or

response variable (dependent variable) and one or

more predictor variables (independent variables)

[43][44]. Logistic regression, on the other hand, is a

statistical method used to predict the probability of an

outcome using the Sigmoid function. This method is

based on binary dependent variables, typically coded

as 0 and 1, representing two possible outcomes such as

On/Off, success/failure, or healthy/sick [43][44].
Regression techniques can extract meaningful

information about workload behaviour, leading to

workload characterisation. This process utilises the

Virtual Machine Monitor (VMM) interface. As posited

by [12], data collected at the VMM level can be used

for workload characterisation, which in turn can

monitor the behaviour of applications on virtual

machines. Workload characterisation is valuable for

workload scheduling, analysing workload trends,

security analysis, online performance monitoring, and

virtual machine health monitoring [12]. VMM based
workload profiles can also be used to compare

malicious behaviour with normal behaviour, aiding in

the identification of malicious attacks on virtual

machines [12].

In the regression technique, data is collected from the

virtual machine by a front-end system, which then

generates features from the collected VMM data. This

data is subsequently transferred to the backend, where

regression is used to characterize the workloads.

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 48

Multiple least squares regression and the Least

Absolute Shrinkage and Selection Operator (LASSO)

algorithms are applied to the generated features to

characterise the workloads and build a model of

workload behaviour.
In [43], an overload host detection algorithm based on

linear and logistic regression was used to monitor the

utilisation of cloud resources. Monitoring data is

collected from virtual machines and processed by

regression modules comprising linear and logistic

regression.

The linear regression model is represented by the

following equation:

Equation 1: Linear Equation [43]

Equation 1 is a fundamental linear equation used in

various fields such as statistics, economics, and

machine learning. y denotes the estimated value; it is
the dependent variable. This is the outcome or the

variable you are trying to predict or explain. x is the

predictor value; it is the independent variable. This is

the input or predictor variable that influences the

dependent variable. b0 is the slope of the line. It is also

known as the y-intercept, it is the value of (y) when (x)

is zero. It represents the starting point of the line on the

y-axis. b1 is the intercept, it is the slope of the line.

This coefficient indicates how much (y) changes for a

one-unit change in (x). It shows the relationship

between the independent variable and the dependent

variable. b0 and b1 are the regression coefficients and

they are computed based on equations 2 and 3 shown
below.

Equation 2: computing the regression coefficient

b0[43]

Equation 3: Computing the regression coefficient

b1[43]

In equation 3, n is the length of the host utilisation

history, x bar, and y bar are the means of xi and yi

denotes the observation variables.

On the other hand, the logistic regression model is

represented by the equation shown below.

Equation 4: Logistic regression [43]

In equation 4, y represents the linear regression

function. Figure 5 below shows the graphical patterns

of linear and logistic regression when plotted on the

XY plane.

Figure 5: Linear Regression and Logistic Regression

[43][44]

6.6 Monalytics

Monitoring and analysis techniques, collectively

referred to as Monalytics [13], integrate monitoring

and analysis systems to manage large-scale data center
systems. According to [14], Monalytics is designed for

efficiency and scalability, performing optimally in

highly dynamic scenarios. It dynamically discovers

resources to monitor and configure at runtime using

monitoring agents. Monalytics implementations

typically target virtualised cloud infrastructures, often

integrating with the Xen Hypervisor.

In [23], a system named MonArch was utilised to

monitor large-scale cloud infrastructure. The

MonArch system is capable of monitoring physical,

virtual, and application layers within cloud

infrastructure, demonstrating both scalability and
extensibility. MonArch employs agents to collect

monitoring data. As [23] further elucidates, monitoring

and analytics are fundamental enablers for providing

visibility and insights in large-scale cloud

infrastructure. A robust monitoring system should

possess the capabilities to collect and analyse

monitoring data. Such a system aids system

administrators in detecting anomalies, identifying SLA

violations, and triggering predefined management

functions for automated corrective actions. These

predefined management functions include stored
procedures, algorithms, and autonomic functions that

adjust resource allocation based on utilisation by either

increasing resources when over-utilised or reducing

them when under-utilised and idle. This scalability

feature distinguishes cloud computing from earlier

models such as grid and cluster computing [55][56].

The optimal online deterministic algorithms and

adaptive heuristics for energy and performance-

efficient dynamic consolidation of virtual machines in

cloud data centers, as utilised in [45], could be

integrated with the Monalytics framework proposed
by [13]. These algorithms could form part of the

automated management functions that detect over or

under utilisation of cloud resources, thereby enhancing

the efficient usage of cloud resources and minimising

the need for human intervention.

6.7 Complex Event Processing

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 49

Complex event processing involves querying data

before storing it in a database, data is queried on the

fly and not stored in a database. CEP is a method used

to track and analyse streams of data about things that

happen(events) and derive a conclusion from the data
in real-time [15][46]. An event is any occurrence that

has significance to the operation of a cloud system, an

event could be the creation of a virtual machine or the

launching of an application [17][46]. The main goal of

CEP is to identify meaningful events in real-time in

large volumes of rapidly changing and highly varied

data so that cloud service providers can take immediate

action and respond quickly to events that can have a

major impact on the operation of a cloud system

[17][46]. CEP allows the analysis of cause and effect

relationships in real-time and this intern allows

corrective action to be taken on virtual resources
before these events negatively impact the operations of

the cloud system. [46] further states that a complex

event involves a broader category of events, and it

typically involves correlations and analysis of multiple

events through the detection of patterns, abstraction,

and filtering. CEP processes different events that are

generated at the same time in multiple locations of a

cloud system [46]. Figure 6 below shows a conceptual

diagram of CEP

Figure 6: Complex Event Processing [18][19]

In Figure 6, events are generated by various sources,

including sensors, probes, IoT devices, and virtual

machines. These events are processed in real-time by

the complex event processor. If the processed events

indicate an anomaly, such as overutilisation of a cloud

resource or the failure of a sensor or virtual resource

within the cloud infrastructure, immediate actions are

taken. The results of the real-time processing trigger

actions based on predefined stored procedures or
algorithms.

6.7.1 Advantages of Complex Event Processing

The adoption of Complex Event Processing (CEP) as

a method for monitoring virtual machines and other

cloud resources offers several benefits. These benefits

are elaborated upon in the sections below.

6.7.1.1 Real-Time Insights

Complex Event Processing (CEP) offers real-time

insights into data from cloud infrastructure. This

capability enables cloud service providers to detect

and address failures promptly, thereby restoring any

compromised components swiftly. Additionally, real-
time processing facilitates the identification of over-

utilised or under-utilised cloud resources, ensuring

their efficient utilisation [46].

6.7.1.2 Detection of Complex patterns and

relationships in real-time

Complex Event Processing (CEP) enables the

detection of intricate patterns and relationships from

various sources in real-time. This capability surpasses
the limitations of other monitoring techniques, which

are often unable to achieve such real-time,

comprehensive analysis [46].

6.7.1.3 Scalability

Complex event processing systems can scale up and

down depending on the volumes of events and data

streams that are received in real-time [46].

6.7.2 Drawback of Complex Event Processing

In as much as there are advantages to the adoption of

CEP as a monitoring technique, there are some

drawbacks as well. The drawbacks of using CEP are

discussed in the sections below.
6.7.2.1 Complexity

Complex event processing systems are complex to

design and maintain. Cloud service providers will face

challenges when it comes to designing the rules and

algorithms that are needed to run such sophisticated

systems [46]. CEP systems require specialised system

administrators and developers for the systems to be

efficiently managed and maintained.

6.7.2.2 Continual Evolution

Complex Event Processing (CEP) systems must

continuously evolve to accommodate changing event
patterns and sources. Managing this constant evolution

presents a significant challenge, given the dynamic

nature of cloud environments where resources are

frequently added and removed. The addition and

removal of cloud resources generates new events and

data streams, which must be monitored and integrated

into the existing monitoring system [46].

6.8 Fine-Grained Monitoring

[18] Proposes the use of SysOptic which is a fine-

grained monitoring system that is based on PMU

(Performance Monitoring Unit) virtualisation to

monitor virtual machines. A Performance Monitoring
Unit (PMU) on the Central Processing Unit (CPU) can

obtain fine-grained monitoring data by adopting

interrupt sampling methods based on hardware events

[18]. Cloud systems are dynamic and run in error-

prone environments, It is therefore important to

employ fine-grained status monitoring and anomaly

detection at run-time to underpin the design of reliable

cloud systems. SysOptic is designed to support the

sharing of PMU data and this data is used to

simultaneously monitor multiple virtual machines

[18]. In [47] a system called cMonitor was used to
obtain fine-grained system semantics using virtual

machine introspection, cMonitor can monitor all the

processes and relate the processes to their network

state. cMonitor can transparently monitor the network

state outside the virtual machine [47]. In [48] a system

called cherub was used to provide fine-grained

protection of applications in untrusted environments.

Cherub is mostly used for virtual machine security by

using fine-grained memory access and flexible

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 50

security objectives [48]. Fine-grained monitoring was

used for fault detection in [49]. The technique

proposed in [49] uses fine-grained application fault

detection based on the virtual machine monitor by

monitoring system calls to the applications and
monitoring the data.

6.9 Virtual Machine Introspection

Virtual Machine Introspection (VMI) is a technique

employed to inspect a virtual machine externally,

allowing for the analysis of the software running

within it. This method, as utilised by [25], is

predominantly applied for monitoring the security of

virtual machines, particularly in the context of

intrusion detection. According to [26], VMI enables an

external security monitor to observe the behaviour of

software inside a virtual machine, including the guest

operating system. This capability is particularly
advantageous for security administrators, as it

facilitates the identification of illicit programs

operating within a system, especially when the

operating system kernel has been compromised. The

primary objective of VMI is to enforce security

policies in scenarios where the operating system is

either untrustworthy or compromised [26].

[27] defines VMI as:

“a technique for externally monitoring the runtime

state of a system-level virtual machine. Monitors can

be placed in another virtual machine, within the
hypervisor, or any other part of the virtualisation

architecture. For virtual machine introspection, the

runtime state can be defined broadly to include

processor registers, memory, disk, network, and any

other hardware-level events [27].”

VMI is a relatively nascent concept that necessitates

further research to be firmly established as a virtual

machine monitoring technique. It is inherently

complex and demands specialised computing skills for

effective utilisation in monitoring virtual machines and

large-scale cloud infrastructures.

VII. OBSERVABILITY

Observability provides the capability to gain a

profound understanding of the internal state of

distributed systems, thereby facilitating the swift

resolution of identified issues [50][51][57]. This is

accomplished through the analysis of data generated

by the system, which includes logs, metrics, traces and

dependencies. The fundamental principle of

observability is that by examining the outputs of a

system, one can infer the internal state of that system

[53][54][58]. Observability encompasses the
utilisation of software tools and practices that assist in

aggregating, correlating, and analysing streams of

performance data from cloud systems. By employing

these tools and practices for performance monitoring,

cloud service providers can effectively monitor,

troubleshoot, and debug applications operating within

the cloud environment [53][54]. The primary objective

of observability is to ensure a comprehensive

understanding of the internal state of a cloud system,

which aids in identifying anomalies or potential

failures, thereby ensuring the system’s availability and

adherence to service level expectations.

According to [50], the term ‘observability’ is derived

from control theory, a branch of engineering focused
on the automation of control in dynamic systems.

Examples of automated control include regulating the

flow of water through a pipe or controlling the speed

of a vehicle over varying terrains based on feedback

received from the system [50].

Application monitoring systems periodically sample

and aggregate system data, referred to as telemetry.

Telemetry aggregated by these monitoring systems

alerts cloud service providers to abnormal conditions,

thereby aiding in the resolution of potential issues

within the cloud infrastructure [51][52].

7.1 Main Telemetry types
Application monitoring platforms continuously

discover and collect performance telemetry. This is

accomplished by integrating with existing

instrumentation embedded within applications and

cloud infrastructure. Observability focuses on the

following telemetry components:

7.1.1 Logs

Logs are granular, time-stamped, complete, and

immutable records of application events. Logs record

every event, with the complete context surrounding the

event. Logs can be used for troubleshooting and
debugging purposes by developers and system

administrators. Logs therefore consist of application

and system specific details about the operations and

flow of control within a cloud system.

[52][53][57][58] state that logs provide context for the

state of the application when metrics are captured.

7.1.2 Metrics

Metrics are the fundamental measures of application

and system health over a given period of time. Metrics

measure system aspects like memory and processor

usage over a period of time [52][53].

7.1.3 Traces
Traces record the end-to-end journey of every user

request or system event. They record what happens in

the entire distributed system and the activity can be

traced back to a particular user [52][53].

7.1.4 Dependencies

Dependencies reveal how each application component

depends on other components, applications, and other

cloud resources [51].

Once applications have gathered the telemetry data,

the applications then aggregate and correlate this data

in real-time and this process provides background
information to cloud service providers that help them

gain a deeper understanding of why the system is slow

or why certain resources are above the agreed

threshold [51][52][53][54][57][58].

7.2 The Difference between Monitoring and

Observability

Monitoring and observability are closely related

concepts that help cloud service providers monitor the

cloud infrastructure and identify potential problems.

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 51

Both monitoring and observability involve collecting

and aggregating data in order to understand or get

insights into the performance and health of the cloud

infrastructure [52][53][54][57][58]. The main

difference is that monitoring captures and displays
data about certain defined metrics while observability

helps with discerning the health of the cloud

infrastructure by analysing its inputs and outputs. With

monitoring, a defined metric can be observed for a

period of time for changes in order to deduce that there

is a problem [52]. With observability, a system will

emit data about its internal state and this data is very

essential in identifying the root cause of a problem in

the system. Monitoring will provide a limited view of

the system and the main focus is on individual metrics

[51], while monitoring will show that there is a

problem with the system, observability will help the
system administrators pinpoint the root cause of the

problem.

VIII. Conceptual Framework

Figure 7: Cloud Resource Monitoring and

Observability Conceptual

Framework[51][52][53][54]

Figure 7 elucidates that the effective monitoring of

cloud resources necessitates a profound understanding

of the intrinsic characteristics of cloud monitoring

systems. It is imperative to acknowledge that cloud

computing represents a unique paradigm,

distinguished by its scalability and elasticity.

Therefore, a cloud monitoring system must address

these distinctive attributes of cloud computing while

incorporating the discussed characteristics of cloud

monitoring systems. However, monitoring cloud

resources in isolation is insufficient. To obtain deeper

insights into the state of the cloud system,

observability must also be employed.

Observability entails the examination of logs, metrics,
traces, and dependencies, as these elements furnish

detailed information regarding the internal state of the

cloud system.

IX. CONCLUSION

Cloud computing has fundamentally transformed the

landscape of computing, evolving into an increasingly

complex technology with the advent of new user

demands and emerging technologies. Consequently, it

is imperative to implement robust cloud resource

monitoring to pre-emptively identify faults before they

escalate into system failures caused by defective

components or resource over-utilisation.
Virtual resource monitoring techniques are essential

for cloud service providers to oversee their cloud

infrastructure, thereby ensuring that the service level

expectations of cloud consumers are consistently met.

However, the surveyed techniques are inherently

complex and introduce additional processing

overheads to the cloud system. The objective is to

adopt lightweight monitoring techniques that do not

hinder the normal operations of the cloud system due

to their processing demands.

Cloud service providers must select monitoring
techniques that are best suited to their specific

environments and employ observability to gain a

comprehensive understanding of the root causes of

cloud system failures and outages. By integrating

observability with monitoring, the combined

capabilities of both approaches can be harnessed,

resulting in more reliable cloud systems with reduced

failure rates. Observability provides cloud service

providers with deeper insights into the system state,

facilitating a clear understanding of failures or

potential causes of system disruptions. Through the

analysis of traces, logs, metrics, and dependencies,
observability aids in the root cause analysis, enabling

the identification and resolution of faulty components

within the cloud infrastructure.

REFERENCES

[1]SolarWinds(2023) Virtualisation Manager,

https://www.solarwinds.com/virtualization-manager/use-cases/vm-

monitoring#:~:text=VM%20monitoring%20tools%20function%20by,log

s%20produced%20by%20virtual%20machines, last accessed on 15th

September 2023

[2]ScienceLogic(2023) Virtual Machine Monitoring,

https://sciencelogic.com/glossary/virtual-machine-

monitoring#:~:text=A%20virtual%20machine%20monitor%20(VMM,an

d%20performance%20of%20associated%20VMs, last accessed on 15th

September 2023

[3] IBM (nd) What is Virtualisation,

https://www.ibm.com/topics/virtualization, last accessed on 15th

September 2023

[4] ScienceLogic (2023) Virtual Monitoring,

https://sciencelogic.com/glossary/virtual-monitoring, last accessed on

15th September 2023

[5] Aceto G., Botta A., De Donato W., Pescapè A (2013) Cloud

monitoring: A survey, http://dx.doi.org/10.1016/j.comnet.2013.04.001

[6] Amazon Web Services(2023) What is Vurtualisation,

https://aws.amazon.com/what-is/virtualization/ , last accessed on 16th

September 2023

[7] Sri Upanya B, Uthra.V, B.Monica Jenefer (2019) Performance

Monitoring System for Virtual Machines, SSRG International Journal of

Computer Science and Engineering (SSRG - IJCSE) - Special Issue

NCTCT Mar 2019

[8] Hasselmeyer P, D’Heureuse N (2014) Towards Holistic Multi-Tenant

Monitoring for Virtual Data Centers, NEC Laboratories Europe, NEC

Europe, Ltd. 69115 Heidelberg, Germany

[9] . Hasselmeyer, N. d’Heureuse, Towards holistic multi-tenant

monitoring for virtual data centers, in: Network Operations and

Management Symposium Workshops (NOMS Wksps), 2010 IEEE/ IFIP,

2010, pp. 350–356.

https://www.solarwinds.com/virtualization-manager/use-cases/vm-monitoring#:~:text=VM%20monitoring%20tools%20function%20by,logs%20produced%20by%20virtual%20machines
https://www.solarwinds.com/virtualization-manager/use-cases/vm-monitoring#:~:text=VM%20monitoring%20tools%20function%20by,logs%20produced%20by%20virtual%20machines
https://www.solarwinds.com/virtualization-manager/use-cases/vm-monitoring#:~:text=VM%20monitoring%20tools%20function%20by,logs%20produced%20by%20virtual%20machines
https://sciencelogic.com/glossary/virtual-machine-monitoring#:~:text=A%20virtual%20machine%20monitor%20(VMM,and%20performance%20of%20associated%20VMs
https://sciencelogic.com/glossary/virtual-machine-monitoring#:~:text=A%20virtual%20machine%20monitor%20(VMM,and%20performance%20of%20associated%20VMs
https://sciencelogic.com/glossary/virtual-machine-monitoring#:~:text=A%20virtual%20machine%20monitor%20(VMM,and%20performance%20of%20associated%20VMs
https://www.ibm.com/topics/virtualization
https://sciencelogic.com/glossary/virtual-monitoring
https://aws.amazon.com/what-is/virtualization/

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 52

[10] G. Katsaros, R. Kübert, G. Gallizo, Building a service-oriented

monitoring framework with REST and nagios, in: 2011 IEEE International

Conference on Services Computing (SCC), 2011, pp. 426–431.

[11] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, M. Wolf, A

flexible architecture integrating monitoring and analytics for managing

large-scale data centers, in: Proceedings of ICAC, 2011.

[12] F. Azmandian, M. Moffie, J.G. Dy, J.A. Aslam, D.R. Kaeli, Workload

characterization at the virtualization layer, in: 2011 IEEE 19th

International Symposium on Modeling, Analysis & Simulation of

Computer and Telecommunication Systems (MASCOTS), 25–27 July

2011, pp. 63–72.

[13] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, M. Wolf

(2010) Monalytics: online monitoring and analytics for managing large

scale data centers, in: Proceedings of the 7th International Conference on

Autonomic Computing, Ser. ICAC ’10, ACM, New York, NY, USA, 2010,

pp. 141–150.

[14] Lemoine F, Aubonnet T, Henrio L, Kessal S, Madelaine E, Simoni

N(2017) Monitoring as-a-service to drive more efficient future system

design, https://hal.science/hal-01582593

[15] L. Romano, D.D. Mari, Z. Jerzak, C. Fetzer (2011) A novel approach

to QoS monitoring in the cloud, in: International Conference on Data

Compression, Communications and Processing, vol. 0, 2011, pp. 4551.

[16] Liu P, Yang R, Sun J, Liu X (2019) ysOptic: A Fine-Grained

MonitoringSystem for Virtual Machines Based on PMU. In: Proceedings

of the 2019 IEEE International Conference on Service-Oriented System

Engineering (SOSE). 2019 IEEE International Confe rence on Service-

Oriented System Engineering (SOSE), 04-09 Apr 2019, San Francisco

East Bay, CA, USA. IEEE , pp. 244-246. ISBN 978-1-7281-1443-9,

https://doi.org/10.1109/sose.2019.00042

[17] Gillis S, A (2023) Complex Event Processing, TechTarget,

https://www.techtarget.com/whatis/definition/complex-event-processing-

CEP

[18] Databricks (2023) Complex Event Processing,

https://www.databricks.com/glossary/complex-event-

processing#:~:text=Complex%20event%20processing%20is%20an,insig

ht%20into%20what%20is%20happening.

[19] Leavit N (2009) Complex Event Processing Poised for Growth,

Computer, Vol.42,NO.4, PP 17-20, Washington

[20] Johansson L (2023) What is RabbitMQ?,

https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-

rabbitmq.html

[21] CloudAMPQ (2023) Master Message Queueing,

https://www.cloudamqp.com/master-message-queueing.html

[22] Chaudhry A. N(2004) Introduction to Stream Data Management,

Department of Computer Science, University of New Orleans, 2000

Lakeshore Drive, New Orleans, LA 70148

[23] Lin J(2015) MonArch:Scalable Monitoring and Analytics for

Visibility and Insights in Virtualised Heterogeneous Cloud Infrastructure,

https://www.semanticscholar.org/paper/MonArch%3A-Scalable-

Monitoring-and-Analytics-for-and-

Lin/3e33cab2d00f64aef7031345fe9b15e55f6418cd

[24] Acetto G, Botta A, Walter de Donato, Pescape A (nd) Cloud

Monitoring: Definitions, Issues and future Direction,

https://www.academia.edu/13859289/Cloud_Monitoring_definitions_iss

ues_and_future_directions?auto=download&email_work_card=downloa

d-paper

[25] Garfunkel T and Rosenblum M (2003) A Virtual machine

Introspection Based Architecture for Intrusion Detection, Network and

Distributed System Security Symposium,

https://www.semanticscholar.org/paper/A-Virtual-Machine-

Introspection-Based-Architecture-Garfinkel-

Rosenblum/4ab4a666f5e5ed34ac219a9fdc2f70bd1cab0922

[26] Jain B, Baig B. M, Zhang D, porter E. D, Sion R (2015) Introspection

on the Semantic Gap, IEEE Computer and Reliability Societies

[27] Payne, B.D. (2011). Virtual Machine Introspection. In: van Tilborg,

H.C.A., Jajodia, S. (eds) Encyclopedia of Cryptography and Security.

Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-5906-5_647

[28] eG Innovations (2023) Message Queue Monitoring and

Observability, https://www.eginnovations.com/supported-

technologies/message-queue-monitoring, last accessed on January 24

2024: 01:12

[29] Raje S (2019) Performance Comparison of Message Queue Methods,

University of Nevada, Las Vegas, http://dx.doi.org/10.34917/16076287

[30] Oracle (2010) Chapter 4: Using the Metrics Monitoring API,

https://docs.oracle.com/cd/E19798-01/821-1796/aeqej/index.html, last

accessed on 27 January 2024: 09:30 PM

[31] IBM (nd) What is a Message Queue?

https://www.ibm.com/topics/message-queues, last accessed on 27

January 2024: 11:52 PM

[32] AWS(2024) What is Stream Data?, https://aws.amazon.com/what-

is/streaming-

data/#:~:text=Streaming%20data%20is%20data%20that,to%20several%

20megabytes%20(MB). Last accessed on 1st February 2024: 01:23 AM

[33] Golab L and Ozsu T. M (2003) Issues in Data Stream Management,

SGMOD, Volume 32, No. 2, June 2003, DOI:10.1145/776985.776986

[34] Alzghoul A (2023) Monitoring Big Data Streams Using Data Stream

Management Systems: Industrial Needs, Challenges, and improvements,

Advances in Operations Research, Volume 23, Article ID 2596069,

https://doi.org/10.1155/2023/2596069

[35] Jiang M, Lee J, Jeong K, Cui Z, Kim B, Hwang S and Choi J. Y

(2015) A Data Stream-Based, Integrative Approach to Reliable Easily

Manageable Real Time Environmental Monitoring, International Journal

of Distributed Sensor Networks, http://dx.doi.org/10.1155/2015/914612

[36] Lopez A. E. M (2018) A Monitoring and Threat Detection System

Using Stream Processing as a Virtual Function for Big Data, HAL Open

Science, HAL Id:tel-02111017, https://theses.hal.science/tel-02111017

[37] Roddewig S (2023) Data Stream: Use Cases, Benefits and Examples,

HubSpot, https://blog.hubspot.com/website/data-stream, Last Accessed

on 4th February 2024:20:15

[38] Hess A and Hauk F (2023) Towards a Cloud Service for State-

Machine Replication, Institute of Distributed Systems, Ulm University,

Germany, https://doi.org/10.18420/fgbs2023f-02

[39] Davidson M (2023) State Machine Replication and Consensus with

Byzantine Adversaries, NIST Internal Report 8460 ipd,

https://doi.org/10.6028/NIST.IR.8460.ipd

[40] Schneider B. F (1990) Implementing Fault-Tolerant Services Using

the State Machine Approach: A Tutorial, ACM Computing Surveys, Vol.

22, No. 4, December 1990

[41] Zimba Y, Libati M. H and Ntalasha D (2022) Failure Free Cloud

Computing Architectures, International Journal of Computer Science &

Information Technology (IJCSIT) Vol 14, No 2, April 2022

[42] Prateek S (2022) Replicated State Machines – Ensuring Fault

Tolerance and High Availability,

https://www.linkedin.com/pulse/replicated-state-machines-ensuring-

fault-tolerance-high-prateek last accessed on 11 February 2024. 03:58 AM

[43] Daraghmeh, Melhem B. S, Agrawal A., Goel N, and Zaman M (2018)

Linear and Logistic Regression Based Monitoring for Resource

Management in Cloud Networks, IEEE 2018, IEEE 6 th International

Conference on Future Internet of Things and Cloud,

doi:10.1109/FiCloud.2018.00045

[44] Mondal S(2024) regression Analysis- Beginners Comprehensive

Guide, https://www.analyticsvidhya.com/blog/2020/12/beginners-take-

how-logistic-regression-is-related-to-linear-regression/ last accessed on

11th February 2024, 22:02

[45] Beloglazov A., and Buyya, R. (2011) Optimal online deterministic

algorithms and adaptive heuristics for energy and performance efficient

dynamic consolidation of virtual machines in Cloud data centers.

Concurrency and Computation: Practice and Experience, 24(13), 1397–

1420. doi:10.1002/cpe.1867

[46] Encora (2023) Guide to Event Stream Processing versus Complex

Event Processing, https://www.encora.com/insights/complex-event-

processing-cep-vs.-event-stream-processing-esp

[47] Hao Z, Lei Z, Lai X and Lina W (2014) cMonitor: VMI-Based Fines-

Grained Monitoring Mechanism in Cloud

[48] Jin H, Cheng G, Zou D and Zhang X (2013) Cherub: Fine-grained

Application Protection with On-Demand Virtualisation, Computers &

Mathematics with Applications, 65(9), 1326–

1338. doi:10.1016/j.camwa.2012.02.001

[49] Liu K, Wo T and Cui L (2013) A Fine-grained Fault Detection

Technique Based of Virtual Machine Monitor, 2013 Conference on Cloud

Computing and Big Data, DOI:10.1109/CLOUDCOM-ASIA.2013.18

[50] IBM(nd) What is Observability?,

https://www.ibm.com/topics/observability#:~:text=Observability%20is%

20the%20extent%20you,knowledge%20of%20its%20external%20output

s. Last accessed on 15 February 2024: 01:02 AM

[51] Livens J(2023) Observability Versus Monitoring: What is the

Difference? https://www.dynatrace.com/news/blog/observability-vs-

monitoring/#:~:text=What%20is%20the%20difference%20between,a%2

0problem%20%E2%80%94%20this%20is%20monitoring. Last accessed

on 15 February 2024: 01:30 AM

[52] Magnusson A (2023) Monitoring Versus Observability: What is the

Difference, https://www.strongdm.com/blog/observability-vs-

monitoring, last accessed on 15 February 2024: 01:32 AM

https://hal.science/hal-01582593
https://www.techtarget.com/whatis/definition/complex-event-processing-CEP
https://www.techtarget.com/whatis/definition/complex-event-processing-CEP
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.cloudamqp.com/blog/part1-rabbitmq-for-beginners-what-is-rabbitmq.html
https://www.cloudamqp.com/master-message-queueing.html
https://www.semanticscholar.org/paper/MonArch%3A-Scalable-Monitoring-and-Analytics-for-and-Lin/3e33cab2d00f64aef7031345fe9b15e55f6418cd
https://www.semanticscholar.org/paper/MonArch%3A-Scalable-Monitoring-and-Analytics-for-and-Lin/3e33cab2d00f64aef7031345fe9b15e55f6418cd
https://www.semanticscholar.org/paper/MonArch%3A-Scalable-Monitoring-and-Analytics-for-and-Lin/3e33cab2d00f64aef7031345fe9b15e55f6418cd
https://www.academia.edu/13859289/Cloud_Monitoring_definitions_issues_and_future_directions?auto=download&email_work_card=download-paper
https://www.academia.edu/13859289/Cloud_Monitoring_definitions_issues_and_future_directions?auto=download&email_work_card=download-paper
https://www.academia.edu/13859289/Cloud_Monitoring_definitions_issues_and_future_directions?auto=download&email_work_card=download-paper
https://www.semanticscholar.org/paper/A-Virtual-Machine-Introspection-Based-Architecture-Garfinkel-Rosenblum/4ab4a666f5e5ed34ac219a9fdc2f70bd1cab0922
https://www.semanticscholar.org/paper/A-Virtual-Machine-Introspection-Based-Architecture-Garfinkel-Rosenblum/4ab4a666f5e5ed34ac219a9fdc2f70bd1cab0922
https://www.semanticscholar.org/paper/A-Virtual-Machine-Introspection-Based-Architecture-Garfinkel-Rosenblum/4ab4a666f5e5ed34ac219a9fdc2f70bd1cab0922
https://doi.org/10.1007/978-1-4419-5906-5_647
https://www.eginnovations.com/supported-technologies/message-queue-monitoring
https://www.eginnovations.com/supported-technologies/message-queue-monitoring
http://dx.doi.org/10.34917/16076287
https://docs.oracle.com/cd/E19798-01/821-1796/aeqej/index.html
https://www.ibm.com/topics/message-queues
https://aws.amazon.com/what-is/streaming-data/#:~:text=Streaming%20data%20is%20data%20that,to%20several%20megabytes%20(MB)
https://aws.amazon.com/what-is/streaming-data/#:~:text=Streaming%20data%20is%20data%20that,to%20several%20megabytes%20(MB)
https://aws.amazon.com/what-is/streaming-data/#:~:text=Streaming%20data%20is%20data%20that,to%20several%20megabytes%20(MB)
https://aws.amazon.com/what-is/streaming-data/#:~:text=Streaming%20data%20is%20data%20that,to%20several%20megabytes%20(MB)
https://doi.org/10.1145/776985.776986
https://doi.org/10.1155/2023/2596069
http://dx.doi.org/10.1155/2015/914612
https://theses.hal.science/tel-02111017
https://blog.hubspot.com/website/data-stream
https://doi.org/10.18420/fgbs2023f-02
https://doi.org/10.6028/NIST.IR.8460.ipd
https://www.linkedin.com/pulse/replicated-state-machines-ensuring-fault-tolerance-high-prateek
https://www.linkedin.com/pulse/replicated-state-machines-ensuring-fault-tolerance-high-prateek
https://www.analyticsvidhya.com/blog/2020/12/beginners-take-how-logistic-regression-is-related-to-linear-regression/
https://www.analyticsvidhya.com/blog/2020/12/beginners-take-how-logistic-regression-is-related-to-linear-regression/
https://www.encora.com/insights/complex-event-processing-cep-vs.-event-stream-processing-esp
https://www.encora.com/insights/complex-event-processing-cep-vs.-event-stream-processing-esp
http://dx.doi.org/10.1109/CLOUDCOM-ASIA.2013.18
https://www.ibm.com/topics/observability#:~:text=Observability%20is%20the%20extent%20you,knowledge%20of%20its%20external%20outputs
https://www.ibm.com/topics/observability#:~:text=Observability%20is%20the%20extent%20you,knowledge%20of%20its%20external%20outputs
https://www.ibm.com/topics/observability#:~:text=Observability%20is%20the%20extent%20you,knowledge%20of%20its%20external%20outputs
https://www.dynatrace.com/news/blog/observability-vs-monitoring/#:~:text=What%20is%20the%20difference%20between,a%20problem%20%E2%80%94%20this%20is%20monitoring
https://www.dynatrace.com/news/blog/observability-vs-monitoring/#:~:text=What%20is%20the%20difference%20between,a%20problem%20%E2%80%94%20this%20is%20monitoring
https://www.dynatrace.com/news/blog/observability-vs-monitoring/#:~:text=What%20is%20the%20difference%20between,a%20problem%20%E2%80%94%20this%20is%20monitoring
https://www.strongdm.com/blog/observability-vs-monitoring
https://www.strongdm.com/blog/observability-vs-monitoring

Zimba et al/ Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025)

Zambia (ICT) Journal, Volume 9 (Issue 1) © (2025) 53

[53] Middleware(2023) Observability Versus Monitoring: The ultimate

Differential Guide, https://middleware.io/blog/observability-vs-

monitoring/, Last accessed on 15 February 2024: 01:33 AM

[54] Samyukktha(2023) Monitoring Versus Observability in 2023,

https://medium.com/cloud-native-daily/monitoring-vs-observability-in-

2023-an-honest-take-f68df4e2d774, last accessed on 15th February 2024:

01:36 AM

[55] Ward J, S (2015) Efficient Monitoring of large Scale Infrastructure

as a Service Clouds, PhD Thesis, University of St Andrews,

http://hdl.handle.net/10023/6974

[56] Ward J and Barker A (2014) Observing the Clouds: A Survey and

Taxonomy of Cloud Computing, Journal of Cloud Computing: Advances,

Systems and Applications (2014) 3:24, DOI 10.1186/s13677-014-0024-2

[57] Kosinska J, Balis B, Konieczny M, Malawski M and Zielinski S

(2022) Towards the Observability of Cloud-native applications: The

Overview of the State-of-the-Art, DOI 10.1109/ACCESS.2023.3281860

[58] Sridharan C (2018) Distributed Systems Observability: A Guide to

Building Robust Systems, O'Reilly Media

[59] Uriarte B., R (2015) Supporting Autonomic Management of Clouds:

Service-Level-Agreement, Cloud Monitoring and Similarity Learning,

IMT Institute of Advanced Studies, Lucca Italy,
https://doi.org/10.6092/IMTLUCCA/E-THESES/163

[60] Nutanix (2023) Your Cloud Monitoring Questions Answered:

Definition, Tools, Benefits and More,

https://www.nutanix.com/info/cloud-monitoring#definition, last accessed

on 3rd June 2024: 00:36 AM

[61] Birje N., M and Bulla C (2019) Cloud Monitoring System: Basics,

Phases and Challenges, International Journal of Recent Technology and

Engineering (IJRTE), Issue 2277-3878, Volume 8, Issue 3, September

2019.

[62] Joyce J., Lomow G., Slind C., and Unger B (1987) Monitoring

Distributed Systems, Volume 5, No 2, May 1987, Pages 121 – 150.

[63] Barje N., M and Bulla C (2019) Cloud Monitoring System: A Review,

International Journal of Engineering Sciences and Management – A

Multidisciplinary Publication of VTU, 2019, Volume 1, Issue Number 1,

page 44-55

[64] Buga A (2015) A Sacalable Monitoring Solution for Large-Scale

Distributed Systems, Springer International Publishing Switzerland, DOI:

10.1007/978-3-319-27340-2 28

[65] Hasselmeyer, P., & d'Heureuse, N. (2010). Towards holistic multi-

tenant monitoring for virtual data centers. 2010 IEEE/IFIP Network

Operations and Management Symposium Workshops, 350-356.

[66] Fatema K., Emeakaroha V. C., Haley D. P., Morrison J., P., and Lynn

T (2014) A Survey of Cloud Monitoring Tools: Taxonomy, Capabilities

and Objectives, Elsevier, http://dx.doi.org/10.1016/j.jpdc.2014.06.007

[67] Pourmajidi W., Steinbacher J., Erwin T., and Miranskyy A (2018) On

Challenges of Cloud Monitoring, arXiv:1806.05914v1 [cs.SE] 15 Jun

2018

[68] Aceto G., Botta A., De Donato W., and Pescape A (2012) Cloud

Monitoring: Definitions, Issues and Future Directions, University of

Napoli Federico II, Italy

[69] Fahad A., Ahmed A. A., and Kahar M. N. M(2017) The Importance

of Monitoring Cloud Computing: An Intensive Review of Monitoring,

TENCON 2017 - 2017 IEEE Region 10 Conference,

DOI:10.1109/TENCON.2017.8228349

[70] Beyer B., Jones C., Petoff J., and Murphy R. N (2016) Site Reliability

Engineering, First Edition, O’Reilly Media Inc, California, United States

of America.

https://middleware.io/blog/observability-vs-monitoring/
https://middleware.io/blog/observability-vs-monitoring/
https://medium.com/cloud-native-daily/monitoring-vs-observability-in-2023-an-honest-take-f68df4e2d774
https://medium.com/cloud-native-daily/monitoring-vs-observability-in-2023-an-honest-take-f68df4e2d774
http://hdl.handle.net/10023/6974
https://doi.org/10.6092/IMTLUCCA/E-THESES/163
https://www.nutanix.com/info/cloud-monitoring#definition
http://dx.doi.org/10.1016/j.jpdc.2014.06.007
http://dx.doi.org/10.1109/TENCON.2017.8228349

