

Douglas Kunda Hazael Phiri

School of Science, Engineering and Technology School of Science, Engineering and Technology
Mulungushi University Mulungushi University

Box 80415, Kabwe, Zambia Box 80415, Kabwe, Zambia

dkunda@mu.ac.zm

 Abstract - Relational Database and NoSQL are competing
types of database models. The former has been in existence since
1979 and the latter since the year 2000. The demands of modern
applications especially in web 2.0, 3.0 and big data have made
NoSQL a popular database of choice. Choosing an appropriate
database model to use is an important decision that developers
must make based on the features of a given database model. This
paper compares the features of Relational Databases and NoSQL
to establish which database is better at supporting demands of
modern applications. The paper also brings out the challenges of
NoSQL. Finally, the paper concludes by determining whether
Relational Databases would completely be replaced by NoSQL
database models. The findings revealed that, Relational Databases
are based on ACID model which emphasizes better consistency,
security and offers a standard query language. However,
Relational Databases have poor scalability, weak performance,
cost more, face availability challenges when supporting large
number of users and handle limited volume of data. NoSQL, on
the other hand is based on the BASE model, which emphasizes
greater scalability and provides a flexible schema, offers better
performance, mostly open source, cheap but, lacks a standard
query language and does not provide adequate security
mechanisms. Both databases will continue to exist alongside each
other with none being better than the other. The choice of the
database to use will depend on the nature of the application being
developed. Each database type has its own challenges and
strengths, with relational database lacking of support for
unstructured data while NoSQL lacks standardization and has
poor security. Modern applications in web 2.0, 3.0 and big data
are well suited to use NoSQL but, there are still many
applications that rely on Relational Databases.

 Key words - Relational Databases, NoSQL, Query Language,
Security

I. INTRODUCTION

 Databases have replaced flat files as repositories of large
pools of data. Since, the inception of databases, Relation
Databases dominated for over 30 years until the year 2000
when NoSQL databases began to replace them in some
applications [1]. The nature of application needs did not
remain static over time and led to applications that are highly
interactive and process large volumes of data, such as e-
commerce and social media. Providing interactive features in
databases is a major requirement for databases serving web 2.0
and 3.0 applications [2]. The shift in application needs has
seen Relational Databases fail to meet the needs of developers
and users. Companies such as Google, Facebook and Yahoo

have migrated to NoSQL to mitigate the shortcomings of
Relational Databases [3]. In spite of these trends, there are
many firms that still use Relational Databases. These firms are
characterized by limited volume of data that require high
levels of consistency.
 Relational Databases are based on ACID model i.e.
Atomicity, Consistency, Isolation and Durability [4].
Atomicity guarantees completeness of transactions,
Consistency provides stability of data in a database, Isolation
ensures independence of multiple transactions that are
executed at the same time and Durability makes sure that
stored transactions do not change state even in the presence of
failure. ACID provides consistency and availability as strong
properties that made Relational Databases popular. NoSQL, on
the other hand is based on the BASE (Basically Available,
Soft State and Eventually Consistent) model [3]. The
distributed nature of NoSQL brings possibilities of data being
partially available when some parts of the distributed database
are not operation or cannot be reached hence, the term
Basically Available. Soft State allows data to vary overtime
with or without input. Eventually Consistent guarantees that
data will become consistent in future and not immediately after
an operation. BASE gives NoSQL ability to scale easily, offer
better performance and greater levels of availability to its
users.
 This paper is based on a review of past literature and
begins with a description of Relational Databases and NoSQL
database models. The discussion then progresses to comparing
the features of Relational Databases and NoSQL which is then
followed by challenges of NoSQL. Based on the features, the
authors try to determine whether NoSQL is better than
Relational Databases at supporting modern database
application needs and whether NoSQL will completely replace
Relational Databases.

II. RELATIONAL DATABASE AND NOSQL TYPES

 There is only one form of Relation Database which is
based on the relational model [5]. Many organizations, have
adjusted their application requirements to conform to the strict
schemas that are fixed in advance in Relational Databases. The
strict schema requires the application to conform to the needs
of the database instead of the database conforming to the needs
of the application. Examples of Relational Databases are
MySQL, Microsoft SQL Server and Postgres.

A Comparative Study of NoSQL and Relational Database

Volume 1 (Issue 1) (2017) Pages 1-4

 ZAMBIA INFORMATION COMMUNICATION TECHNOLOGY (ICT) JOURNAL

1Volume 1 (Issue 1) © (2017) Zambia (ICT) Journal,

 There are many types of NoSQL databases and from the
literature reviewed, four are prominent. These include Key-
Value, Document oriented, Column databases and Graph
databases [6]. In key value, data is stored as a collection of key
and value pairs, where the key is a single element in a database
identified by its attribute and the value is the value of the
attribute [7]. Key value is easy to use but, does not support
handling of relationships between data items. Examples of key
value database include Memcached and Redis [3]. Document
oriented databases use the key and document as attributes
where the key refers to the whole document [8]. Examples of
document oriented databases are MongoDB and CouchDB,
which are well suited to handling complex data structures but,
still lack the ability to handle relationships among data items.
Column databases contain rows/columns similar to Relational
Databases but, each column is stored in a separate file. A key
in column oriented databases refers to a column. Other
attributes stored include the value and a timestamp. Bigtable
and Cassandra are examples and by design, these are less
flexible but, offer greater throughput. Graph databases
represent data as connected graphs and are based on graph
theory [8]. Graph databases are less scalable but, support
greater connectivity. Examples include GraphDB and
OrientDB.

III. FEATURES OF RELATIONAL DATABASES AND NOSQL

DATABASE MODELS

A. Closed and Open Source
 Relational Databases consists of both open source and
proprietary platforms [5]. The proprietary types of Relational
Databases like Oracle are often able to scale better than open
source counterparts such as MySQL. However, many NoSQL
database models are open source such as MongoDB,
CouchDB and Cassandra [9]. The open source nature of
NoSQL offers greater opportunities for researchers in
investigating features of a database and provides cheaper
storage for users that cannot afford proprietary database
models.
B. Scalability
 Relational Databases, usually scale up, where hardware
upgrades must be made to one server to make it more efficient.
This increases the amount of effort required from
administrators in upgrading Relational Databases [1]. This
method of upgrading also faces challenges in terms of
hardware limitations which are fixed by design and cannot be
altered. For example, the maximum amount of RAM or
secondary storage that is supported by hardware has a fixed
value that is determined by the manufactures of the hardware.
This means that Relational Databases have the ability to scale
but, there will always be a limit on the level of scalability as it
is determined by the hardware. To offer scalability, NoSQL
require the use of commodity server’s i.e. scaling horizontally
[8] [10]. Scaling horizontally is not significantly affected by
hardware limitations because smaller, cheaper and less
powerful server machines can be combined to offer higher

levels of scalability instead of having one expensive server.
This ability makes implementation easy as virtual machines
can be used as commodity servers in scenarios where actual
hardware cannot be acquired. Virtual machines can be added
and removed without degrading the performance of the
database. Modern Internet applications like social media
require high levels of scalability which is not adequately
addressed in Relational Databases but, is efficiently provided
in NoSQL [16].
C. Cost
 Relational Databases that are better are proprietary and
therefore, require great amounts of investment from
organizations and individuals that want to benefit from their
advanced features. Additional hardware for upgrades also adds
other additional costs. This makes Relational Databases to be
an expensive approach to data storage [7]. NoSQL is mostly
open source which makes it to be a cheaper alternative to
Relational Databases [9]. The ability to use virtual machines as
commodity servers further reduces the cost of maintaining a
NoSQL database, making NoSQL a compelling cheap data
store for organizations.
D. Volume and Variety of Data
 Internet applications have increased the volume of data
that databases are expected to handle [11]. The internet has
seen the emergence of web 2.0 and 3.0 which have increased
the volume and variety of data that must be stored. The coming
of big data has also increased volume and variety of data.
Relational Databases have failed to handle the large volumes
of data coming from these sources. NoSQL is excelling at
handling large volumes of data making it suitable for data
intensive internet applications [12]. This can be seen from
companies such as Google, Facebook and Yahoo that have
migrated to NoSQL [3].
E. Availability
 The number of users and the time spent accessing data has
increased, with examples such as social media, ecommerce and
cloud storage taking the lead. By design, Relational Databases
usually suffer from single point of failure even for very
powerful servers [5]. Availability is further limited because
Relational Databases scale up. Single points of failure do not
fit well in today’s modern internet applications on which users
are very reliant on to support them in their daily lives.
Therefore, the distributed nature of NoSQL makes a better
choice to provide availability to users all the time even in the
presence of hardware failures [10]. The Basically Available
nature of NoSQL makes it possible to have access partial parts
of a database in the presence of failure. Users are guaranteed
of continued access to the database irrespective of the failures
with the system.
F. Performance
 Relational Databases require much more time to process
information making them slow as compared to NoSQL that are
fast at processing [13]. The performance of NoSQL improves
further as it retrieves data from volatile memory, unlike
Relational Databases that retrieves data from non-volatile
memory. By design, volatile memory is faster than non volatile

2

Kunda D., Phiri H., A Comparative Study of NoSQL and Relational Database*

Zambia (ICT) Journal, Volume 1 (Issue 1) © (2017)

memory. In internet Search applications, NoSQL has
outperformed Relational Databases when searching for
information [14]. Experiments have been conducted to test
performance of both NoSQL and Relational Databases. A
comparison of Relational Database to MongoDB showed that
MongoDB had better performance for read, update and basic
queries while SQL only performed well at updating non key-
attributes [15].
G. Complexity
 Relational Databases create complex data in
circumstances where data to be stored by users is difficult to
convert into tables [1]. The emphasis on storing structured
data in Relational Databases brings this complexity. Relational
Databases complex queries and transactions may not be
required in some scenarios where simple read or write
operations can suffice such as in social media. NoSQL can
store both semi structured and unstructured data [16]. The
ability of NoSQL to store both semi structured and
unstructured data provides flexibility required to support
multiple varieties of data in their raw state without loss of
information. For example, converting an audio recording of
customer complaint to text for storage in Relational Databases,
leads to a loss of information about the mood of the customer.
Such information can be preserved in NoSQL, as the recording
can be stored in its state without conversion.
H. Query Language
 Relational Databases have a strong foundation and well
documented literature about SQL. SQL is the only data
manipulation language that all Relation Databases use [5].
However, there are minor variations of SQL implementations
for the various Relational Databases in use. The strong
foundation provided by SQL, makes Relational Databases
popular among developers because of the shorter learning
curve on any implementation of Relational Database. This
foundation still lacks in NoSQL as it relies on object oriented
API for data manipulation [1]. Each implementation of
NoSQL has its own data manipulation language which, require
developers to spend time learning when developing on
different type of NoSQL model than the one they are
accustomed to. Having multiple ways of querying NoSQL,
limits the number queries supported because each
implementation must provide its own unique queries [17]. The
demands of web 2.0 and 3.0 calls for agile development
approaches and NoSQL may fail to meet these demands, since
development time is increased by developers who need to
learn the language of implementation.
I. Consistency
 Relational Databases offer stronger consistency with the
strict schema [8]. This feature makes Relational Databases to
sacrifice availability as the two are not complimentary. Strong
consistency is good for providing uniform view of data
immediately after operations are performed. However, there
are applications such as social media were flexibility is more
important than consistency [16]. NoSQL provides greater
availability but, has poor consistency [7]. So for social media,

NoSQL is more suitable as a storage option than Relational
Databases.
J. Security
 Relational Databases face some security challenges such
as SQL injection and cross site scripting. Despite these
challenges SQL has strong security mechanisms that are used
to protect the data which include authentication, authorization,
encryption, integrity and auditing [1]. The security
mechanisms are part of the database. In NoSQL security is not
part of the database but, is handled by middleware [7]. This
leaves the database to be vulnerable to attacks. Further, the
security mechanisms implemented in middleware should be
implemented in a way that does not compromise scalability
and performance.

TABLE I
COMPARISON OF RELATIONAL DATABASE AND NOSQL

 Criteria

Relational Database

NoSQL

1
Variety Both open source and

closed platforms [5]
NoSQL mostly open

source [9]

2
Scalability Scales up by upgrading

hardware of a single
server [1].

Scale horizontally
using commodity

servers [8]

3

Cost expensive approach for
data storage [7]

Cheaper as it is open
source and

inexpensive upgrade
[9]

4
Volume of

Data
Handle limited data

[11].
Handle large volumes
data especially in Big

Data [12].

5

Availability suffers from single point
of failure [5]

Distributed nature
provides availability to

users all the time in
the presence of

hardware failures [10]

6
Performance require much more time

to process information
making them slow [13]

tends to have better
query performance

[16]

7

Complexity create complex data in
circumstances were data
to be stored by users is
difficult to convert into

tables [1]

store both semi
structured and

unstructured data
which is less complex

[16]

8

Query
Language

SQL is the only data
manipulation language

that all Relation
Databases use with
minor variations in
implementation [5]

Each implementation
of NoSQL has its own

data manipulation
language [19]

9
Consistency has strong consistency

with the strict schema
[8]

has poor consistency
with a schema less

approach [7]

10

Security Has strong security
mechanisms that are

used to protect the data
[1]

Leaves security to be
handled by

middleware and is not
part of the database [7]

IV. CHALLENGES OF NOSQL

 One of the challenges of NoSQL is that it lacks a standard
query language [19] [20]. There are more than 50
implementations of NoSQL, with each providing its own
language and interface [8]. This has hindered the wide

3

Kunda D., Phiri H., A Comparative Study of NoSQL and Relational Database*

Zambia (ICT) Journal, Volume 1 (Issue 1) © (2017)

acceptance of NoSQL as it is difficult for developers to master
all implementations of NoSQL manipulation languages.
Therefore, NoSQL has fewer users than Relational Databases
[10].
 Another challenge of NoSQL is poor security as it is still
an immature technology [21]. By design, NoSQL offers
limited security because emphasis is placed on data handling.
NoSQL databases can be attacked by scanning Known port
numbers and the data at rest is not encrypted [17]. For NoSQL
data that is in transit, SSL transport can be used but, it is not
turned on by default as is the case of MongoDB [21]. NoSQL
has insufficient logging capabilities making it more vulnerable
to insider attacks which cannot be traced easily.

V. CHOOSING A BETTER DATABASE MODEL

 Relational Databases are easy to implement, robust,
consistent and secure but, they are too rigid [18]. NoSQL
performs well in handling huge volumes data, supports
unstructured data but, is less consistent and unsecure. It is not
possible to conclude that one database is better than the other
[8]. Each database model may be chosen depending on the
application to be developed. For small applications requiring
strong consistency, a developer may choose Relational
Databases and for large dynamic databases, a developer may
choose NoSQL. In web 2.0, 3.0 and big data applications
NoSQL is a better choice than Relational Databases.

VI. NOSQL AS A REPLACEMENT FOR RELATIONAL

DATABASES

 NoSQL may have become popular but, it will not
completely replace Relational Databases [4]. For Big Data,
Social Networks, Internet of things, NoSQL will continue to
dominate but, there are many applications that will still
continue to rely on Relational Databases. NoSQL and
Relational Database will continue to exist side by side to
complement the shortcomings of each other.

VII. CONCLUSION AND FUTURE WORK

 In this paper, we have presented a comparison of NoSQL
and Relational Databases based on existing literature. The
study shows that the features of Relational Databases are well
suited to handling limited volume of structured data. The study
also reveals that NoSQL features are designed for scalability
and performance, with thin layer of security over a non-
standard Query language. Future work can be conducted
determine the possibility of providing a standard query
language for NoSQL.

REFERENCES

[1] M. Abourezq and A. Idrissi, "Database-as-a-Service for Big Data: An
Overview," International Journal of Advanced Computer Science and
Applications, vol. 7, no. 1, pp. 157-177, 2016.

[2] A. . T. Kabakus and R. Kara, "A performance evaluation of in-memory
databases," Journal of King Saud University – Computer and
Information sciences, 2016.

[3] J. Batra and S. Batra, "MONGODB Versus SQL: A Case Study on
Electricity Data," Emerging Research in Computing, Information,,
2016.

[4] H. L. Zhen, H. Beda, M. Doug, L. Ying and J. C. Hui, "Closing the
functional and Performance Gap between SQL and NoSQL," 2016.

[5] M. A. Mohamed, "Relational vs. NoSQL Databases: A Survey,"
International Journal of Computer and Information Technology, vol. 3,
no. 03, 2014.

[6] S. Priyanka and AmitPal, "A Review of NoSQL Databases, Types and
Comparison with Relational Database," International Journal of
Engineering Science and Computing,, vol. 6, no. 5, pp. 4963-4966,
2016.

[7] A. K. Zaki, "NoSQL Databases: New Milleneum Database For Big
Data, Big Users, Cloud Computing and Its Security Challenges,"
International Journal of Research in Engineering and Technology, vol.
3, no. 3, 2014.

[8] A. Singh, "NoSQL : A New Horizon in Big Data," International Journal
of Scientific Research in Science, Engineering and Technology, vol. 2,
no. 2, 2016.

[9] W. Kim, "Web data stores (aka NoSQL databases): a data model and
data management perspective," Int. J. Web and Grid Services, Vol. 10,
No. 1, 2014, vol. 10, no. 1, pp. 100-110, 2014.

[10] S. Sharma, R. Shandilya, S. Patnaik and A. Mahapatra, "Leading
NoSQL models for handling Big Data:," Int. J. Business Information
Systems, vol. 22, no. 1, 2016.

[11] A. B. Moniruzzaman and S. A. Hossain, "NoSQL Database: New Era of
Databases for Big data Analytics -," International Journal of Database
Theory and Application, vol. 06, no. 4, 2013.

[12] A. Nayak, A. Poriya and D. Poojary, "Types of NOSQL Databases and
its Comparison with Relational Databases," International Journal of
Applied Information Systems, vol. 5, no. 4, 2013.

[13] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes and J. Abramov, "Security
Issues in NoSQL Databases," in International Joint Conference of IEEE
TrustCom, IEEE ICESS-11, 2011.

[14] Z. Parker, S. Poe and S. V. Vrbsky, "Comparing NoSQL MongoDB to
an SQL DB," vol. ACMSE'13, 2013.

[15] S. Srinivas and A. Nair, "Security Maturity in NoSQL Databases – Are
they Secure Enough to Haul the Modern IT Applications?," in
International Conference on Advances in Computing, Communications
and Informatics IEEE, 2015.

[16] J. Kepner, D. Hutchison, H. Jonathan, T. Mattison, S. Samsi and A.
Ruether , "Associative Array Model of SQL, NoSQL, and NewSQL
Databases," 2016.

[17] E. Barbierato, M. Gribaudo and M. Iacono, "Performance evaluation of
NoSQL big-data applications using," Future Generation Computer
Systems, no. 37, pp. 345-353, Elsevier, 2014.

[18] L. Rocha, F. Vale, E. Cirilo, D. Barbosa and M. Fernando, "A
Framework for Migrating Relational," Procedia Computer Science, vol.
51, pp. 2593-2602, Elsevier, 2015.

[19] K. K.-Y. Lee and W.-C. Tang, "Alternatives to relational database:
Comparison of NoSQL," Computer Methods and Programs in
Biomedine, no. 110, pp. 99-109, Elsevier, 2013.

[20] A. Makrisa, K. Tserpesa, V. Andronikoub and D. Anagnostopoulo, "A
classification of NoSQL data stores based on key design," Procedia
Computer Science, no. 97, pp. 94-103, Elsevier, 2016.

[21] P. Atzeni, F. Bugiotti and L. Rossi, "Uniform access to No SQL
systems," Information Systems, no. 43, pp. 117-133, Elsevier, 2014.

4

Kunda D., Phiri H., A Comparative Study of NoSQL and Relational Database*

Zambia (ICT) Journal, Volume 1 (Issue 1) © (2017)

